

Asynchronous Ballistic Reversible Superconducting Computing

Fadi Matloob, Frank Allen, James Hardy, Oscar Lopez

1FAMU-FSU College of Engineering

Introduction and Motivation

- Reversible Computing Ability to recover inputs
 - o Beyond CMOS
 - Landauer's limit Minimum amount of energy required to transfer information
- Superconductivity Current can be transmitted without any resistance
 - O High power efficiency
 - O Fast processing capabilities

Applications

- Quantum Computing (Skywater)
 - o DWAVE
 - Northrop Grumman
- Communications (HYPRES)
 - o High bandwidth ADCs (Aerospace and Defense)

Project Background

- WRSpice
 - o Provides support for simulating superconducting circuitry using a SPICE foundation
 - o Uses SPICE netlists files to be interpreted as a circuit
- Josephson junctions (JJ)
 - o Can allow a current to pass through with zero voltage drop

Objective

- Search and find asynchronous ballistic reversible superconducting (ABRS) circuits
 - o Create a software tool to search for possible circuits
- Find design principles for ABRS circuits

Current Status

- Progress:
 - O Generated all netlists for exclusively series and parallel circuits
 - Combinations of JJs, capacitors, and inductors
 - O Developed simulation data output as CSV files which can be manipulated by MATLAB
 - O Created python to WRSpice interface
- Challenges:
 - O Understanding the theory in order to understand simulation outputs
 - O Generalizing circuit building to not recreate previously simulated circuits
 - O Finding an algorithm to optimize circuit search and identify working patterns

Future Work

- Spring Plan:
 - O Add combinations of series and parallel circuits to netlist generation
 - O Create a method of automating testing and filtering of results
 - O Implement a search algorithm:
 - Random search
 - > Systematic search
 - > Genetic search
- Goals:
 - O Find working circuits
 - O Potentially: write a conference paper based on tool findings

References

- Michael Frank PhD, SMTS at Sandia National Laboratories
 - O Sponsor
- Frank Allen Electrical Engineering student
 - O Lead Engineer
- James Hardy Electrical and Computer engineering student
 - O Lead Programmer
- Oscar Lopez Electrical Engineering student
 - Lead Researcher
- Fadi Matloob Computer Engineering student
 - O Project Manager