Project Update

Team #302: Asynchronous Ballistic Reversible Superconducting (ABRS) Computing Frank Allen, Oscar Lopez, James Hardy, and Fadi Matloob

Agenda

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

Project Scope

- Project Goal:
 - Create a software tool to find functioning asynchronous reversible superconducting circuits
- Key Requirements:
 - Generate Circuit Topologies
 - Sweep Possible Device Values
 - Interpret and Filter the Results
 - Visualize Functional Circuits

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

Functional Decomposition Cont.

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

James Hardy

Walking Through Components – Clickable

James Hardy

James Hardy

Oscar Lopez

Oscar Lopez

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

Bugs & Difficulties

- Combinational circuits
 - Series & Parallel
- Sweeping values
 - Algorithm
- Simulation
 - Matching output
 - Testing automation
- Filtering results
 - Fluxon existence only

Existing Circuit

- Summary
 - Project Scope
 - Function Decomposition
- Progress Breakdown
 - Walking Through Components
- Challenges
 - Bugs & Difficulties
- Next Steps
 - Plan For Progress

Plan For Progress

- Discussion with Michael Frank
 - Matching output
- Testing and validation
 - Parallel processing
- Visual output

Code

Netlist Example - Clickable

```
.lib C:\Users\FaDiMaT\Downloads\XIC\main.lib master
.model jjk2 jj(rtype=0, cct=1, vg=2.8m, icrit=1.5u, cap=60f)
.tran 0.02ps 0.6ns uic
x0 aa zz master
L0
    aa
              300pH
                        ic=-7uA
    aa
         ZZ
                        ic=-7uA
    b
                   jjk2 ics=7.5uA
.save tran L0#branch v(66) L1#branch L2#branch
.control
run
plot L0#branch v(66) L1#branch L2#branch
write outtest2 LO#branch v(66) L1#branch L2#branch
.endc
```

```
* TEAM 382
     * Lib file
     * Contents:
                   - Convert DC current to Single Fluxon Quantum
                  - Schematic provided by SUNY
                   - physics.sunysb.edu/Physics/RSFQ/Lib/AR/dcsfq.html *
                 - Purpose:
                   - Transmittion line, forces delay
                   Schematic provided by Sandia Labs
                   - 28 L33S
                   - spaced so proding can be done
                   - makes it easier to do a complete 100
               - Plecewise Current source
                  - Needed for the DCSFQ input
*------
.subckt master top_out bottom_out
.model jjk jj(rtype=0, cct=1, vg=2.8m, icrit=1.5u, cap=60f)
I0 0 top1 pwl(0 0 25p -0.07m 75p 0.35m 900p 0 r)
X0 top1 top2 20uAdcsfq
L0 top2 top3 150pH 1c=13.7855589uA
X1 top3 0 top4 bottom1 dljj20
X2 top4 bottom1 top5 bottom2 dl1128
X3 top5 bottom2 top6 bottom3 dljj20
X4 top6 bottom3 top7 bottom4 dljj20
X5 top7 bottom4 top_out bottom_out dljj20
.subckt dljj-seg LT LB RT RB
.model jjk jj(rtype=0, cct=1, vg=2.8m, icrit=1.5u, cap=60f)
B0 5 6 7 jjk tcs=1.5uA
L0 LT 5 7.845pH
L1 5 RT 7.845pH
L2 LB 6 7.845pH
L3 6 RB 7.845pH
.ends dljj-seg
.subckt dljj20 LT LB RT RB
X0 LT LB 5 25 dljj-seg
X1 5 25 6 26 dljj-seg
X2 6 26 7 27 dljj-seg
X3 7 27 8 28 dljj-seg
X4 8 28 9 29 dljj-seg
X5 9 29 10 30 dljj-seg
X6 10 30 11 31 dljj-seg
X7 11 31 12 32 dljj-seg
X8 12 32 13 33 dljj-seg
X10 14 34 15 35 dljj-seg
X11 15 35 16 36 dljj-seg
X12 16 36 17 37 dljj-seg
X13 17 37 18 38 dljj-seg
X14 18 38 19 39 dljj-seg
X15 19 39 20 40 dljj-seg
X16 20 40 21 41 dljj-seg
X17 21 41 22 42 dljj-seg
X18 22 42 23 43 dljj-seg
X19 23 43 RT RB dljj-seg
```

WRspice Example

Visual Example

