# FAMU-FSU College of Engineering

# Pole Health Detection Sensor Florida Power and Light Team 301





#### **Overview**

- Team Introduction
- Background
- Project Scope
- Customer Needs
- Design Requirements
- Functional Decomposition
- Next Steps
- Summary



Cates

Team Introduction



#### **Team Introduction**



Corie Cates *Project Manager* 



Alonzo Russell Hardware Engineer



Leonardo Velazquez Software Engineer



Thomas Williams Hardware Engineer

Cates Background



### **Background**



- Current Pole Inspection Process
  - 18 Steps
  - Inspected every 8 years
  - 2 million poles in Florida
- Safety Concerns
  - Lineman incident

Cates Project Scope



## **Project Scope**

#### Motivation:

- Improve safety and reliability
- Reduce resources needed to inspect poles
- Increase inspection efficiency

#### Goal:

Automate and simplify pole health inspection process





#### **Customer Needs**

- 1. Automate sounding process
- 2. Travel length of pole
- 3. Portable
- 4. Easy to use





## **Design Requirements**

- 1.1 Detect voids in southern pine wood utility pole
- 2.1 Climb to the height of telecommunications line
- 2.2 Keep tension while climbing
- 3.1 Weigh less than 50 pounds
- 3.2 Operated by a single person
- 4.1 Rechargeable battery
- 4.2 Display important information to user
- 4.3 Kill button





#### Level 0:

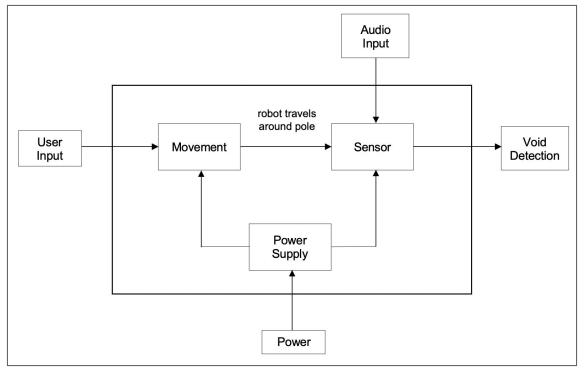
| Module        | Pole Health Detection Robot                                     |
|---------------|-----------------------------------------------------------------|
| Inputs        | <ul><li>Input Signal</li><li>Power</li><li>User Input</li></ul> |
| Outputs       | <ul><li>Void Detection</li><li>Movement</li></ul>               |
| Functionality | Detect and measure internal decay in a pole                     |

Velazque:

Functional Decomposition



#### Level 1:


| Module        | Movement                                                                                                                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs        | <ul><li>User Input</li><li>Power</li></ul>                                                                                                 |
| Outputs       | Vertical Movement                                                                                                                          |
| Functionality | Take user input and traverse pole to specification utilizing vertical and rotational movement to create an accurate reading of pole health |



#### Level 1 Continued:

| Module        | Sensor                                          |
|---------------|-------------------------------------------------|
| Inputs        | <ul><li>Power</li><li>Input Signal</li></ul>    |
| Outputs       | Void Detection                                  |
| Functionality | Take audio input signal to detect voids in pole |





Williams



## **Next Steps**

- 1. Concept Generation
- Concept Selection & Design
- Bill of Materials
- 4. Order Parts
- 5. Begin Building Prototype
- 6. Test and Revise Prototype

FAMU-FSU Engineering

Williams

Summary



# **Summary**

- Automating and simplifying the pole inspection process
- Working with ME Team to build pole climbing robot with health sensing capabilities
- Needs to be portable and easy to use
- Concept will be chosen by next presentation

Cates

### **Questions?**