FAMU-FSU College of Engineering

Pole Health Detection Sensor *Florida Power and Light* Team 301

ELECTRICAL AND COMPUTER ENGINEERING

Overview

- Project Scope
- Design Requirements
- Concept Generation
- Concept Selection
- Selected Design
- Next Steps
- Summary

Project Scope

- Motivation:
 - Improve safety and reliability
 - Reduce resources needed to inspect poles
 - Increase inspection efficiency
- Goal:
 - Automate and simplify pole health inspection process

Alonzo Russell

Design Requirements

- 1.1 Detect voids in southern pine wood utility pole
- 2.1 Climb to the entire length of pole
- 2.2 Keep tension while climbing
- 3.1 Weigh less than 50 pounds
- 3.2 Operated by a single person
- 4.1 Rechargeable battery
- 4.2 Display important information to user
- 4.3 Kill button

Leonardo Velazquez

Concept Generation

- Tools:
 - Morphological Chart
 - Biomimicry
- Goals:
 - Produce 100 concepts
 - 5 medium fidelity concepts
 - 3 high fidelity concepts

ELECTRICAL AND COMPUTER ENGINEERING

Medium Fidelity Concepts

	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5
Sensor	Audio	Ground Penetrating Radar (GPR)	Sonar Tomography	Ultrasound	Electrical Resistance Tomography
Controller	Button Controller	IOS App	IOS App	Laptop Computer	Gaming Controller
Power	Li-ion Battery	Li-ion Battery	Li-ion Battery	Ni-Cd Battery	Ni-Cd Battery

High Fidelity Concepts

	Concept 1	Concept 2	Concept 3
Sensor	GPR	Electrical Resistance Tomography	Sonar Tomography
Controller	IOS App	Button Controller	IOS App
Power	Li-ion Battery	Ni-Cd Battery	Li-ion Battery

Concept Selection

- Tools:
 - Pugh Chart
 - Analytical Hierarchy Process
- Goal
 - Determine final design from high fidelity concepts

Pugh Charts

Criteria	Weight	GPR (Reference)	Electrical Resistance Tomography	Sonar Tomography
Cost	2	-	+1	-1
Size & Weight	2	-	0	0
Invasiveness	4	-	-1	-1
Power Consumption	4	-	-1	+1
Adaptability	3	-	-1	-1
Score		-	-9	-5
Continue?		Yes	Combine?	Combine?

Pugh Charts

Controller:

Criteria	Weight	IOS App (Reference)	Button Controller
Cost	2	-	-1
Size & Weight	2	-	-1
Power Consumption	3	-	-1
<i>Operation Distance</i>	4	-	0
Ease of Use	4	-	0
Score		-	-7
Continue?		Yes	No

Leonardo Velazquez

Pugh Charts

Power:

Criteria	Weight	Li-ion (Reference)	Ni-Cd
Cost	1	-	+1
Charge Duration	4	-	-1
Power Density (Wh/liter)	4	-	-1
Size/Weight	3	-	-1
Time to full charge	3	-	-1
Score		-	-13
Continue?		Yes	No

Leonardo Velazquez

Analytical Hierarchy Process

Criteria	Weight	GPR, IOS App, Li-ion Battery	ER Tomography, Button Controller, Ni-Cd Battery	Sonar Tomography, IOS App, Li-ion Battery
Cost	2	3	4	2
Size & Weight	1	3	2	2
Invasiveness	4	5	2	2
Power Consumption	4	3	2	4
Ease of Use	3	5	3	3
Effectiveness	3	4	2	2
Sc	ore	68	41	45

Thomas Williams

Selected Design

Thomas Williams

Ground Penetrating Radar

- Used detect underground utilities
- Relies on high frequency radio waves
- Different items have different

permittivities

Thomas Williams

IOS App

- Available on iPhone/iPad
- Connect via Bluetooth
- Control robot movement and sensing abilities
- Display important information

Li-ion Battery

- Battery used for cordless power tools
- Easy to remove and charge
- Already used in the field

ELECTRICAL AND COMPUTER ENGINEERING

Next Steps

- 1. Order Parts
- 2. Begin Building Prototype
- 3. Test and Revise Prototype

- Automating and simplifying the pole inspection process
- Working with ME Team to build pole climbing robot with health sensing capabilities
- Selected Design: GPR, IOS app, Li-ion battery

Questions?

ELECTRICAL AND COMPUTER ENGINEERING