FAMU-FSU College of Engineering

Pole Health Detection Sensor *Florida Power and Light* Team 301

Corie Cates Alonzo Russell Leonardo Velazquez Thomas Williams

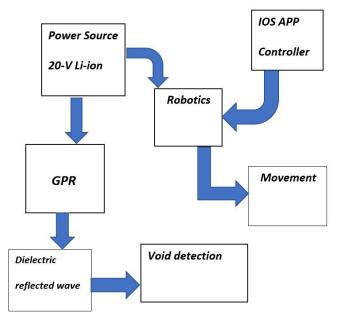
- Project Scope & Goals
- Selected Design
- GPR Modeling & Simulation
- Initial Prototype
- Future Work
- Summary

Project Scope

- Motivation:
 - Improve safety and reliability
 - Reduce resources needed to inspect poles
 - Increase inspection efficiency
- Goal:
 - Automate and simplify pole health inspection process

Project Goals

- Detect voids in southern pine wood utility pole
- Climb to the height of telecommunications line
- Keep tension while climbing
- Weigh less than 40 pounds
- Operated by a single person
- Rechargeable battery
- Display important information to user



Leonardo Velazquez

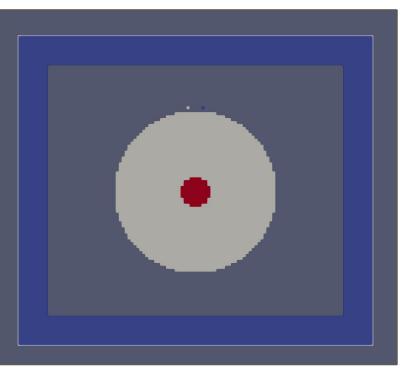
Selected Design

- Robot: Triangle Climber
- Sensor: Ground Penetrating Radar (GPR)
- Controller: IOS App
- Battery: Li-ion (Wireless Drill Battery)

Leonardo Velazquez

GPR Simulation

- gprMax
- Miniconda3
- Python3 and Cython
- Yee's algorithm to solve


Maxwell's equations in 3D using FDTD method

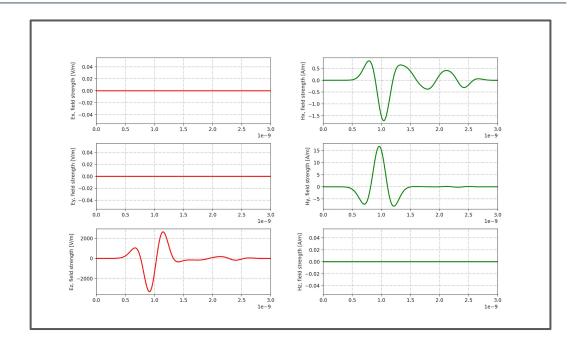
```
#title: test 1
   #domain: 0.240 0.210 0.002
   #dx_dy_dz: 0.002 0.002 0.002
   #time_window: 3e-9
   #material: 2 0 1 0 dry_wood
   #waveform: ricker 1 1.5e9 wave
   #hertzian_dipole: z 0.115 0.16 0 wave
10 #rx: 0.125 0.16 0
11
   #cylinder: 0.120 0.105 0 0.120 0.105 0.002 0.055 dry_wood
12
   #cylinder: 0.120 0.105 0 0.120 0.105 0.002 0.010 free_space
13
14
   #geometry view: 0 0 0 0.240 0.210 0.002 0.002 0.002 0.002 test1 n
15
16
```


GPR 2D Model

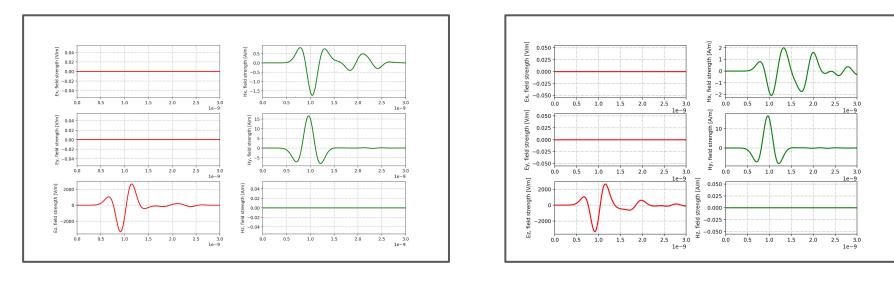
- ParaView-5.9.0
- Cross-section of utility

pole with air pocket

• Scaled down by 2



ELECTRICAL AND COMPUTER ENGINEERING

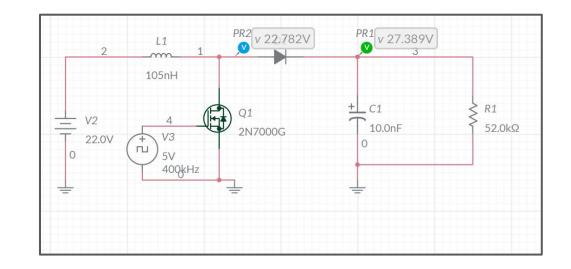

GPR Simulation

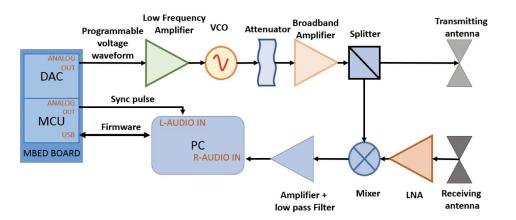
- Changing Variables:
 - Frequency
 - Waveform
 - Void Material
 - Void Location

Simulation Results

Control: Solid Pole ($\epsilon = 2$)

Pole ($\epsilon = 2$) with Void ($\epsilon = 20$)


Alonzo Russell

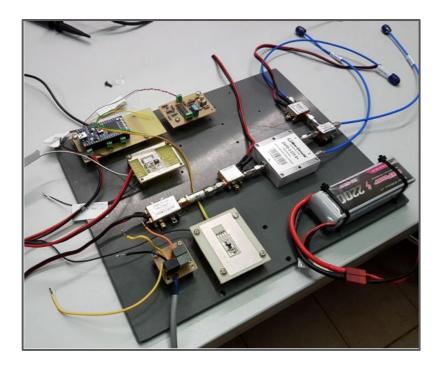

Initial Prototype

- RF power supply
- Boost converter (22V-27V)
- ME team Buck converter (22V-5V)
- HILTI B22-5.2 battery pack

Initial Prototype

- Waiting on components
 - Low Noise Amplifier
 - Power Splitter
 - Frequency Mixer
 - Adapter
 - Coaxial Cables
- Determining signal processing

needs



Future Work

- Construct initial prototype
- Begin programming IOS app
- Continue working on simulation

Leonardo Velazquez

Summary

- Automating and simplifying the pole inspection process
- Built working simulation
- Start building initial prototype
- Continue testing and revising

Questions?

ELECTRICAL AND COMPUTER ENGINEERING