Senior Design Team 301: Safe-X

Team Introductions

William Fulmer Team Lead Machine Learning Engineer Tyler Farnsworth Financial Advisor Machine Learning Engineer

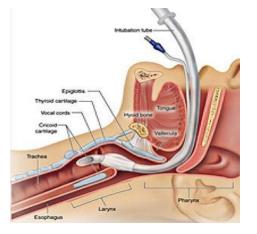
Kennyth Kouch Microcontroller Engineer Electrical Engineer Ahmad Amrouch Signal Processing Engineer Electrical Engineer

Sponsor and Advisor

William Freeman M.D. Ashley Pena M.D. Lisa Nordan

Dr. Rodney Roberts

Presenter: William Fulmer



Project Background

Intubation - A procedure in which an **endotracheal tube** is inserted through patient's mouth into their trachea to:

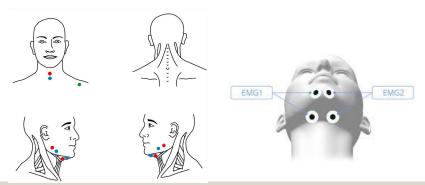
- Support breathing in patients who cannot do so on their own
- Remove blockages in airways
- Prevent fluid from getting into a patient's lungs

Intubation is required for many health crises, including: heart attack, stroke, respiratory diseases (pneumonia, covid-19), collapsed lungs, and more

Project Background

Extubation - A procedure in which the endotracheal tube is removed from the patient

Extubation Failure - The need to re-intubate a patient within hours or days


- Planned extubations fail in 10-20% of patients with a mortality rate of 25-50%
- Other consequences include increased length of hospital stay and higher ICU costs

Study (Reference)	Number of Extubations	Rate of Extubation Failure [% (<i>n</i>)]	ICU Mortality in Reintubated Patients [% (n)]	ICU Mortality in Nonreintubated Patients (%)
Esteban <i>et al.,</i> 1997 (<u>1</u>)	397	19 (74)	27 (20)	3
Esteban <i>et al.,</i> 1999 (<u>2</u>)	453	13 (61)	33 (20)	5
Epstein <i>et al.,</i> 1997 (<u>4</u>)	287	14 (40)	43 (17)	12
Vallverdu <i>et al.,</i> 1998 (<u>3</u>)	148	15.5 (23)	35 (8)	5.6
Thille <i>et al.,</i> 201 <mark>1</mark> (<u>6</u>)	168	15 (26)	50 (13)	5
Frutos-Vivar et al., 2011 (<u>14</u>)	1,152	16 (180)	28 (50)	7
Funk <i>et al.</i> , 2009 (<u>38</u>)	257	10 (26)	Not available	Not available
Tonnelier <i>et al.,</i> 2011 (<u>39</u>)	115	10 (12)	Not available	Not available
Sellares <i>et al.,</i> 2011 (<u>34</u>)	181	20 (36)	Not available	Not available
Peñuelas <i>et al.,</i> 2011 (<u>40</u>)	2,714	10 (278)	26 (72)	5

Project Scope

Project Description: Safe-X is a prototype that processes EMG signals in order to perform data classification to inform a doctor as to when a patient can be safely extubated

Assumptions:

EMG signals scan various neck and throat muscles to determine patient stability

The project's core subjects include Signal Processing and Machine Learning

Presenter: Tyler Farnsworth

Project Scope

Key Goals:

Read and Interpret EMG Signals

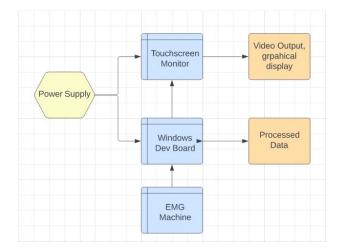
Highly Accurate Classification Model

Create an operable prototype as a major deliverable by the end of the academic year

Markets:

Primary Market: Hospitals

Secondary Markets: At home patients, Hospice Centers, Field Doctors


Selected Components

8 Lead, Wired EMG Sensor by IWORX LattePanda, windows development board

16" Touchscreen Monitor

Custom printed Chassis

Mayo Clinic Visit

- Target muscles Masseters, digastrics, and sternocleidomastoids
- Viewed two patients
 - Bell's Palsy
 - Weakened nerves on one side of the face
 - Patient re-intubated
 - Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)
 - Neurological disorder that weakens motor control
 - Patient had difficulty breathing & couldn't speak

Mayo Clinic Visit

- Started normative data collection
 - Benchmark tests that were developed were approved by Dr. Freeman
 - Gathered data for 13 subjects while on Campus
- Visited EEG Lab in order to learn about preparing electrode landmarks, and reducing impedance of our signals

Preliminary Results - Prototype

- Functioning EMG Device
- Created a settings file to automatically set up different views of EMG and allow for automatic exportation of data
- Designed and 3D printed a custom chassis
 - Second design is completed, with the intention of water jetting a new chassis
- Created a series of benchmark tests that has been approved by Mayo faculty

Preliminary Results - Data

- Gathered normative data for around 20 patients
 - Each patient provides around 650,000 750,000 (1 data point/ms) data points
- Analysis of Data
 - Moment of incidence, Feature extraction, time for muscles to relax
- Framework of Machine Learning Algorithm

Presenter: William Fulmer

Preliminary Results - Issues

- LabScribe not running on ARM Architecture
 - Windows Development board
- Facial Hair Issues
 - EEG Lab solutions
- · IRB Status, no non-normative data
 - Only volunteers
- Electrode Size/Amount of Electrodes

Questions?

