Concept Selection

Binary Pairwise Comparison

	Autono mous	Obsta cle Avoid ance	Rea d QR Cod es	Limit Spee d	Fit in a 2ft. Box	Weigh t Limit	Multip le Terrai n	Cut Off	Light Sensor	Total
Autonomo us	-	1	1	1	1	1	1	1	1	8
Obstacle Avoidance	0	-	1	1	1	1	1	1	1	7
Read QR Codes	0	0	-	1	1	1	1	1	1	6
Limit Speed	0	0	0	-	1	1	1	1	1	5
Fit in a 2ft. Box	0	0	0	0	-	1	1	1	1	4
Weight Limit	0	0	0	0	0	-	1	1	1	3
Multiple Terrain	0	0	0	0	0	0	-	1	1	2
Cut Off	0	0	0	0	0	0	0	-	1	1
Light on/off	0	0	0	0	0	0	0	0	-	0
Total	0	1	2	3	4	5	6	7	8	-

House of Quality

 $\uparrow \downarrow$

Customer Needs		Engineering Requirements							
	Weight	Autonomous	External	Total	Maximum	Torque	Low	On-Board	Cut-Off
	Factor		Volume	Weight	Operating	at	Light	Camera	Switch
					Speed	Wheels	Sensors		
Autonomous	8	$\uparrow\uparrow$			$\downarrow\downarrow\downarrow$	\downarrow			\uparrow
Small	4		$\uparrow\uparrow$	\uparrow	\uparrow	\uparrow			
System									

Lightweight	3		\uparrow	$\uparrow\uparrow$	\uparrow	\uparrow		\uparrow	
Human Walking Speed	5	1	\downarrow	个	ተተ				个
Traverse Office Terrain	2	个个		Υ.	个	ተተ			
Obstacle Avoidance	7	个个	↑		个个	↑			
Scans QR Code	6						$\uparrow\uparrow$	$\uparrow\uparrow$	
Easy On/Off	1	↑							↑
Varied Light Conditions	0						个个	1	
Targets		No External Input	≤ 2 ft³	≤ 20 Ibs.	≤ 4 mph	≥ 0.3 Nm	Lidar Sensor	Raspberry Pi Camera Module v2	On/Off

Pugh Chart

The concepts being compared in the Pugh Chart below come from the concept generation.

Concepts:

Concept 1:

- Power: Lithium Polymer Batteries
- Reasoning Hardware: Arduino
- Sensor Suite: LIDAR, RGBD Camera, IMU
- Locomotion: Caterpillar Track, DC Motors
- Frame: Aluminum

Concept 2:

- Power: Lithium Polymer Batteries
- Reasoning Hardware: Raspberry Pi 4
- Sensor Suite: LIDAR, sonar Sensor, Raspberry Pi Camera Module, IMU, light sensor
- Locomotion: Mecanum Wheels, DC Motors
- Frame: Plastic

Concept 3:

- Power: Lithium-Ion Cells
- Reasoning Hardware: BeagleBone
- Sensor Suite: LIDAR, RGBD Camera, IMU
- Locomotion: Linear Actuators, Omni wheels, DC Motors

- Frame: Plexiglass

Concepts					
Selection Criteria	Concept 1	Concept 2	Concept 3		
Accurate	-1	+1	+1		
Ease of Use	0	+1	+1		
Power	-1	0	-1		
Cost	-1	0	0		
Smooth Integration	-1	+1	-1		
Durability	+1	0	0		
Score	-3	3	0		
Continue?	No	Yes	No		

Analytic Hierarchy Process (AHP)

A - wrt AHP priorities - or B?			Equal	How much more?
1	Orit-1	O Crit-2	O 1	O 2 <mark>O 3</mark> O 4 O 5 O 6 O 7 O 8 O 9
2	O Crit-1	Crit-3	Ο1	O 2 O 3 O 4 O 5 O 6 © 7 O 8 O 9
3	O Crit-2	Ocrit-3	Ο1	○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ● 8 ○ 9

Priorities

Decision Matrix

These are the resulting weights for the criteria based on your pairwise comparisons:

Ca	t	Priority	Rank	(+)	(-)
1	Crit- 1	18.8%	2	10.0%	10.0%
2	Crit- 2	5.4%	3	2.9%	2.9%
3	Crit- 3	75.7%	1	40.4%	40.4%

The resulting weights are based on the principal eigenvector of the decision matrix:

	1	2	3
1	1	6.00	0.14
2	0.17	1	0.12
3	7.00	8.00	1

Reasoning Har	dware	Raspberry Pi 4	Arduino Mega	BeagleBone
Ease of use	0.188	6	8	7
Cost	0.54	5	7	6
Compatibility	0.757	9	4	6
Score		10.641	8.312	9.098

Movement/Direction		Mecanum Wheels	Omni	Caster Wheels
Manipulation				
Ease of use	0.188	7	6	1
Cost	0.54	5	5	7
Compatibility	0.757	8	7	3
Score		10.072	9.127	6.239

QR Code Scann	ner	Zed Mini	Raspberry Pi	MakerFocus Pi 4B	Adafruit Pixy2
			Camera Module v2	Camera with	
				Holder	
Ease of use	0.188	3	8	7	7
Cost	0.54	2	7	7	3
Compatibility	0.757	1	8	8	7
Score		2.401	11.34	11.152	8.235

Sensors		LIDAR	Ultrasonic	IMU
Ease of use	0.188	5	8	7
Cost	0.54	6	8	9
Compatibility	0.757	7	9	8
Score	-	9.479	12.637	12.232

Power Allocation		LiPo Batteries	Lithium-Ion Cells
Ease of use	0.188	8	5
Cost	0.54	6	8
Compatibility	0.757	7	6
Score		10.043	9.802

Robot Frame		Aluminum	Plexiglass	Plastic
Ease of use	0.188	5	3	7
Cost	0.54	5	6	8
Compatibility	0.757	5	4	8
Score		7.425	6.832	11.692

Final Selection

- Power: Lithium Polymer Batteries
- Reasoning Hardware: Raspberry Pi 4
- Sensor Suite: LIDAR, sonar Sensor, Raspberry Pi Camera Module, IMU, light sensor
- Locomotion: Mecanum Wheels, DC Motors
- Frame: Plastic

We used the binary comparison table, house of quality, pugh chart, and analytical hierarchy process to come up with the best solution to our concept selection. This final choice will be able to meet all of the customer's needs while simultaneously being able to efficiently meet all of the engineering requirements. Our final product should be able to autonomously traverse an office environment without collision with objects and people, while taking into account cost, power efficiency, and time complexity.