

FINAL DESIGN REVIEW:

Incremental Motion Knee Joint

Larry Jones Rajiva Rampersad Giselle Rojas Donna Wright

FAMU-FSU College of Engineering April 06, 2006

Agenda

- Problem Statement/Specifications
- Concept Comparison/Selection
- Analysis & Calculations
- Design Details
- Machining Process
- Fabricated Prototype/Simulation
- Cost Analysis
- Problems Encountered/Solutions
- Conclusion

Problem Statement

 Fillauer Inc., a leading manufacture of prosthetics and orthotics in the world, would like an incremental motion orthotic knee joint designed and fabricated.

FUNCTION:

- •To help patients with contractures, who have trouble straightening their leg
- •To assist in standing from a seated position
- •A knee joint that has incremental locking points but extends freely

Product Specifications

- Should allow free motion joint settings.
- Needs to accept all KingPin bars.
- Needs to withstand a moment of 80 Nm on test machine for 1 million cycles.
- Needs to withstand a moment of 12 Nm medial laterally for 1 million cycles.
- Manufacturing price target \$40 for just the joint. (Medicare)

- Range of motion from straight (Zero degrees) to minus 110 degrees; would like 130deg.
- Maximum increments 15 degrees; would like 10 degree increments
- May have an infinite number of locking positions.

Conform to ISO standards: ISO/TC 168/WG 3

Decision Matrix

	Manufacturability	Cost	Range of Motion	Ease of Use	KingPin Interface	Total
Internal Ratchet w/ spring loaded pawls	5	5	5	3	3	21
Pawl & Ratchet Clutch	4	4	5	5	4	22
Roller Clutch	3	2	5	4	3	17
Planetary Transmission Clutch	3	3	5	2	2	15

Preliminary Mechanism Concepts

Mechanism #1: 2 pawls 2 springs actuator internal ratchet

Mechanism #2: 1 pawl 1 spring lever external ratchet

Preliminary Design Concepts

Design #1: Internal Ratchet with Spring Loaded Pawls

Design #2: Pawl and Ratchet Clutch

PRO's	CON's	PRO's	CON's
Simple mechanism	Double Parts	Utilize similar housing of KingPin	Machining
Machinability	Difficult actuation		
	concept	External ratchet	
	KingPin Bars Interface	Ease of Use	

Design Components

Mechanism

Housing

"Cantilever Beam" Assumption

$$\max = \frac{M \cdot c}{I} \qquad \text{Max Bending Stress}$$

$$\sigma \max = 6.09 \times 10^4 \frac{lb}{in^2}$$

*ultimate tensile strength = 160000 psi
**yield strength =150000 psi

Shear Stress $V = 1416 \text{ lb/in}^2$

 σ

Deflection $Y=3.15*10^{-5}$ inches

Finite Element Analysis: ALGOR

- Capable of analyzing stresses on complex geometries
- Assumed a non-uniform rectangular cross-section
- Analyzed with a distributed load

Nodal Displacement= 3.4348e-5 in.

Finite Element Analysis: ALGOR

Maximum Principal Stress= 96,635.4 Ib/in²

Von Mises Stress= 74,288.3 lb/in²

Design Concept Assembly

Exploded View

Assembled View

Machining Process

- Electrical Discharge Machining
 - Ratchet Gear
 - Pawl
- complex shapes and geometries
- affordable when low counts and/or high accuracy is desired.

- Lathe
 - Pins
 - Gear Ratchet Backing

Prototype Components

Gear Hub

Actuation System

Pawl

Middle Housing

Outer Housing

Backing

Prototype Assembly

Weight: 0.75 lbs Thickness: 0.5 inches Length: 4.25 inches (does not include actuation device)

Simulation

Cost Analysis

Material Description (Bulk)	Total Price	No. of Parts per Bulk Order	Knee Joint Part
Type 17-4 PH Hardened Stainless Steel Rod 1-1/8" Diameter, 1" Length (Same as 87205K14)	\$20.89	3	Ratchet Gear 1" Diameter 0.32" Length
Type 416 Stainless Steel Rod 1-1/2" Diameter, 1" Length (Same as 89095K32)	\$31.19	16	Ratchet Gear Backing 1-1/2" Diameter 0.0625" Length
Type 416 Steel Precision Ground Rod ¹ / ₄ " Diameter, 4' Length (Same as 88955K25)	\$14.19	3	Pawl 0.25" Diameter 1.24" Length
Virgin Electrical Grade Rod of Teflon PTFE 1-3/8" Diameter, 3' Length	\$20.33	20+	Bearing 1.34" Diameter
Type 416 Ss Dowel Pin 1/8" Diameter, ¹ ⁄2" Length, MIL Spec 16555-627, Packs of 50	\$10.46	16	Pins 1/8" Diameter ¹ /2" Length

Total Cost for Materials = \$97.06

Approx. Cost per joint = \$32.35

Testing Process

** 1 Million Cycles for 24 hours

** Testing Gear Tooth Strength in 1 Position

Problems Encountered & Proposed Solutions

Problems Encountered & Proposed Solutions

Placement of bearings

Change dimensions (depth & diameter) of bearings and grooves

Current: inner diameter =1.25 inches

Proposed: inner diameter =1.1 inches

Problems Encountered & Proposed Solutions

Mechanism does not lock properly

Redesign gear tooth angle steepness

Stiffer Spring

Conclusion

- Machined 2 prototypes
- Prototype met range of motion specifications
- Met specified dimensions (thickness/weight)
- Gear teeth were designed at 11.25° increments
- Met the target budget
- Foundation for marketable product

Acknowledgements

Fillauer Inc., Sponsor

Daniel Buck, Supervising Engineer Florida State University Physics Machine Shop FAMU/FSU COE Machine Shop Brian Moore, T.A.

QUESTIONS & COMMENTS

THANK YOU FOR YOUR TIME AND ATTENTION!

