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CHAPTER 2

Energy Conversion

Introduction

A water flow from an upper level to a lower level represents a hydraulic power potential. This
power flow can be utilised in a water power plant by conversion to mechanical power on the
shafts of turbines. However, some fractions of the power potential are lost partly in the plant’s
conduits and partly in the turbines.

In this chapter a brief description is given of the power conversion in the turbines that are
common in hydro power stations.

2.1 Fundamentals and definitions

Specific energy

The specific energy of a hydro power plant is the quantity of potential and kinetic energy which
1 kilogram of the water delivers when passing through the plant from an upper to a lower
reservoir. The expression of the specific energy is Nm/kg or J/kg and is designated as [m?/s*].

In a hydro power plant as outlined on Fig. 2.1, the difference between the level of the upper
reservoir z.s and the level of the tail water z, is defined as the gross head

ng = Zres - Ztw (2 l)
The corresponding gross specific hydraulic energy
Eq=gH, (2.2)

where g is the acceleration of gravity.
When a water discharge Q [m’/s] passes through the plant, the delivered power is

Py = pQgHgr (2.3)
where P, is the gross power of the plant

p isthe density of the water
Q s the discharge

To look further on the hydropower system in Fig. 2.1 the specific hydraulic energy between the
Sections (1) and (3) is available for the turbine. This specific energy is defined as net specific
energy and is expressed by

E, = gH, (2.4)

E
and the net head of the turbine H, = = (2.5)
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As shown on Fig. 2.1 there are two ways of expressing the evaluation of the net head. The one
way

H, =h, + c¢*/2g

And the other way

EL
H,=Hy - —-=Hg - Hy
g

where h, is the piezometric head
above tailwater level measured in
section (1), ¢*/2g is the velocity head
in section (1) and Ei/g is specific
) hydraulic energy loss between
\ reservoir and section (1) converted to
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1/ 7 Equations (2.2) and (2.4) should be
3 mentioned. For efficiency tests of
hydro turbines a relatively high
exactness of the determination of the
------------- -—- B ~ specific energy is required. Therefore
Fig. 2.1 Hydro power plant. Definition of gross head Hy, an international standard exists for
and net head H, the measurements and evaluations of

such tests. The name of it is International Standard IEC 41.

In addition to the specifications of relevant levels this standard take into account the influences
of: Compressibility and temperature effects of the water; the weight of the air column difference
between the reservoir and the tail water; the difference of specific kinetic energy between
defined sections of the system and at last that the acceleration of gravity depends on the altitude
and latitude.

The specific energy expressed by putting H,, corresponding to Fig. 2.1, in Equation (2.2) and H,
in Equation (2.4) respectively, is consequently approximations according to this standard.
However, the mentioned influences are relatively small, i.e., totally of the order 1% in extreme
cases. This means that these influences are essentially smaller than the tolerance accuracy of the
hydraulic dimensioning of the turbomachines. Therefore the hydraulic considerations of
calculation and design in the following sections are based on constant values of the acceleration
of gravity and the density of water, no influence of temperature and the weight of the air column.

2.2  Transforming hydraulic energy into mechanical energy
2.2.1 General considerations
Ordinary turbines.

The discharge and the net head for turbines differ in wide ranges from one power plant to
another. This indicates that not only different types of turbines but also a very large register of
sizes of turbines are needed.
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The ordinary turbine types in water power plants are distinguished in two main groups:

- impulse turbines
- reaction turbines

This distinction is based on the difference between the two cases of energy conversion in these
turbines. Briefly these two ways of energy conversion may be pronounced as follows.

e Basically the flow energy to the impulse turbines is completely converted to kinetic energy
before transformation in the runner. This means that the flow passes the runner buckets with
no pressure difference between inlet and outlet. Therefore only the impulse forces being
transferred by the direction changes of the flow velocity vectors when passing the buckets
create the energy converted to mechanical energy on the turbine shaft. The flow enters the
runner at nearly atmospheric pressure in the form of one or more jets regularly spaced around
the rim of the runners. This means that each jet hits momentarily only a fraction or part of the
circumference of the runner. For that reason the impulse turbines are also denoted partial
turbines.

e In the reaction turbines two effects cause the energy transfer from the flow to mechanical
energy on the turbine shaft. Firstly it follows from a drop in pressure from inlet to outlet of
the runner. This is denoted the reaction part of the energy conversion. Secondly changes in
the directions of the velocity vectors of the flow through the canals between the runner blades
transfer impulse forces. This is denoted the impulse part of the energy conversion. The
pressure drop from inlet to outlet of the runners is obtained because the runners are
completely filled with water. Therefore this group of turbines also have been denoted as fu!//
turbines.

The most commonly used turbines today are:

- impulse type: Pelton turbines

- reaction type: Francis turbines
Kaplan turbines
Bulb turbines

In the following sections the hydraulic energy transfer in Pelton turbines as well as the reaction
turbines is described in more detail /¥

2.2.2 Impulse turbine - Pelton

A section through a Pelton runner is shown in Fig. 2.2. The water jet from the nozzle hit the
buckets that are spaced equidistant around the runner disc. In the left lower corner of the figure a
look into a bucket in the same direction as the incoming jet is shown. To the right of the figure a
section through two neighbouring buckets are shown for the indicated section line A - A. In this
section is shown how the jet flow is split symmetrically at the bucket edge and passing over the
bucket. The jet deflection is nearly up to 180°, but limited to a little smaller angle because the
leaving jets have to run clear of the subsequent bucket behind.

For a net head H, the theoretical velocity of the water jet out of the nozzle is found according to
Bernoulli’s equation

c, =4/2gH, (2.6)

However, an energy loss occurs in the nozzle. This influence is corrected for by a friction
coefficient ¢, and the velocity then becomes
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=¢2gH, 2.7)

A value of the friction coefficient based on experience may be ¢ = 0.98.

RADIAL SECTION / \

Position of bucket for \
- the last particle at outlet
(et's lowerrim)

Relative path of fluid particie
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Fig. 2.2 The water jet flow into a Pelton runner. Velocity diagrams at inlet and outlet of the buckets /3/

The runner is assumed to rotate with a constant angular speed o.

One water particle is considered, for example the particle in the centre of the jet just at the
splitting edge of the bucket and marked as position (1) on the Fig. 2.2. This bucket is drawn for a
position corresponding just to the moment that the full jet is entering the bucket. The absolute
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velocity c; is known from Equation (2.7). The peripheral velocity of the runner u; = 1
corresponds to radius r; in position (1). The direction of this velocity vector is the same as the
tangent in position (1) of the circle with radius r;.

When the absolute velocity c¢; of the water particle and the peripheral velocity u; in position (1)
are known, the velocity v; of the water particle relative to the bucket in position (1) can be
found. The absolute velocity c; is the geometric sum of the peripheral velocity u; and the relative
velocity v;. Therefore one has to draw the three velocity vectors from point (1) so that c; is the
diagonal in the parallelogram with u; and v; as sides. This parallelogram is called the velocity
diagram of the water particle at the inlet of the bucket.

The water particle moves over the bucket and changes its direction gradually until it leaves the
bucket at position (2) as shown in section A - A on Fig. 2.2. During this movement the particle
transfers its impulse force corresponding to the change from the direction of the relative velocity
vector v, to the relative velocity vector v,. The magnitude of v, depends on energy losses during

v

the passage of the bucket. These losses can be expressed as C, 5 where (, is defined as loss

coefficient. From experience an estimated value of £, = 0.06. The relation between v, and v, is
found according to Bernoulli’s equation:

2 2 2
hy+ ol =h, 424 22 (2.8)
2g 2g 2g
In this case h; = hy, and therefore
v oV
(I+g,) 22 2g (2.9)
and
v, = ——1 (2.10)

\/1"'92

The magnitude of velocity v, is nearly as great as v; and has a direction as shown in position (2),
section A - A on Fig. 2.2. The peripheral velocity u, is assumed the same as u; because in an
approximate approach it is supposed that the water particle enters and leaves the runner bucket at
the same radius of the runner. Therefore the velocity diagram may be drawn from position (2)
with u, and v, as the parallelogram sides and the absolute velocity c, as the diagonal. This
velocity diagram shows that the magnitude of c, is much smaller than of ¢;, which is just the
main intention to obtain, because c,*/2 is a direct measure for the loss at outlet of the turbine.

The passage of the water particle from position (1) to position (2) lasts a certain time interval,
and during this time the runner rotates a corresponding angle. If the corresponding positions of
the bucket and the absolute flow path under this passage over the bucket are drawn, one get an
absolute flow path which ends up with the velocity vector ¢, as shown in section A - A on Fig.
2.2. The absolute velocity vector is therefore tangent to this path all the way of the passage.

The description of the movement over the bucket of one water particle is valid also for all the
other particles of the full jet. These particles will however trace different paths, but even so, in
practise it is assumed that the impulse force and the corresponding torque transfer to the runner
is the same from all water particles in the jet.

When the runner is rotating and the bucket starts splitting the jet, it gradually takes up more and
more of the full jet area until it cut the jet completely. But immediately after this cut the
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succeeding bucket starts splitting the jet and repeats the same behaviour as the preceding bucket.
In the time interval between the first water particle enters and the last one leaves a bucket at a
distance as indicated on Fig. 2.2, is covered.

The total deflection of the jet may be made greater for a relatively large spacing between the
buckets compared with a smaller one. Therefore the spacing between the buckets is made as big
as possible, but not larger than to secure that all water particles will hit the bucket.

With the same torque transfer to the runner from all water particles in the jet, the velocity
diagrams for the inlet and outlet respectively for one of the water particles is valid for all the
water particles of the jet. The general expression for the transferred power Pg is therefore

Pp =pQuic,; —u,c,,) (2.11)

where Q is discharge
u; s the peripheral velocity of the runner where the jet hit the bucket
u, is the peripheral velocity of the runner at jet outlet of the runner
cu1 1s the component of the absolute velocity c; in the direction of u;
cw2 1s the component of the absolute velocity c; in the direction of u,

As previously mentioned the peripheral velocity u; = u, for the Pelton turbine. Moreover it is
suggested to insert the peripheral velocity corresponding to the runner diameter to which the
centre line of the jet is tangent. The power equation then becomes:

Pr =Qu,(c, —¢,,) (2.12)

How this power varies if the rotational speed is changed, is interpreted as follows. As basis is
ascertained that the absolute velocity c; is constant and therefore c,; is constant. The discharge Q
is constant while the angular velocity o is varied. The rotating speed u; = rjo. From Fig. 2.2 it is
found that ¢, varies when ® is varied. In the case u; = 0, i.e., the runner is at standstill, the
power Pr = 0 and c» = - ¢,;. When the runner is rotating, the velocity component ¢, decreases
as the rotational speed increases and it approximates to zero when u; increases towards ci/2. At
the same time it is observed that the power Pr increases when u; increases from zero.

If u; increases towards cyj, ¢y also increases and approaches to c,; so that (c,; - ¢,2) advances
towards zero. In this case the power again approaches towards zero. This case corresponds to the
run away speed.

A closer examination shows that the transferred power Py to the runner has its maximum value
when c,; is close to zero and accordingly u; approximately like c,/2.

Regulation of the power means to regulate the discharge Q by adjustment of the needle position
to larger or smaller openings of the nozzles. For constant angular speed the regulations really
cause minor or no changes of the velocity diagrams.

2.2.3 Reaction turbines

Francis, Kaplan and Bulb turbines are the reaction turbines normally applied. The transfer of
hydraulic energy into mechanical energy is principally similar in these turbines. However, the
hydraulic design of Francis turbines differ so much from that of Kaplan and Bulb turbines that an
interpretation of the energy transfer will be given for each of these two groups.
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Francis turbines

Fig. 2.3 shows an axial section through a Francis turbine with the guide vane cascade (G) and the
runner (R). The runner is fastened to the turbine shaft (S).

A4

-Absolute streamnline

Relative streamline

H, net head

h, piezometerhead

0, is angle of guide vane outlet
o, is angle of absolute velocity at

v runner inlet
71—~ b] % B: is blade angle at runner inlet
3. B; is blade angle at runner outlet
Velocity diagrams at inlet Velocity diagrams at outlet
. Cyuy ’
L U, © = Ongemal us
-y B, S joy = y
L Cul - Cu2.
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Fig. 2.3 Axial section through a Francis turbine. Velocity diagrams at inlet and outlet of the runner /3/

The energy transfer will be considered on the basis of the movement of one water particle along
the coaxial stream surface of revolution having a contour (a - b), in the axial section through the

turbine. To observe the movement of this particle through the turbine, a section across the guide
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vanes and runner blades perpendicular to the paper plane in Fig. 2.3 is needed. This should be
made along the contour (a - b), i.e., along (a - o) through the guide vane cascade and along (1 —
2) through the runner cascade.

However, the stream surface (a - b) in Fig.2.3 has a double curvature. Therefore the surface
cannot be unfolded unless by a transformation from the real surface to a single curved surface. In
practise this can be done by using conform transformation method because the angles of
geometry then are kept unchanged from the real surface to the transformed surface.

The section through the runner cascade shown to the right on Fig. 2.3, is assumed to represent a
conform transformation onto a conical surface tangential to the contour (1 - 2).

It is assumed that the turbine is installed at the bottom of an open reservoir filled with water up
to a certain level above the guide vane cascade. The guide vane direction angle o, is assumed
constant and the runner is rotating with a certain angular speed ® and the water is filling all the
runner canals completely.

The consideration is assumed to start with a water particle at the inlet edge of the guide vane
cascade. Through the guide vane canal the water particle is assumed to follow the streamline in
the middle of the canal width as shown on the figure. The guide vanes are designed so that the
movement of the particle is changed from the radial direction at inlet to leave the outlet edge of
the canal with a rather large velocity component in the peripheral direction. The outlet edge of
the guide vanes is indicated with the index (o), and the absolute velocity of the water particle at
this edge is accordingly denoted c,. The direction of ¢, is supposed to coincide with the direction
of the vanes at the outlet of the guide vane cascade.

It is assumed that the water particle passes without friction through the ring chamber between the
guide vane outlet and the inlet of the runner. Therefore it will keep an unchanged vortex
momentum. That means rc, is constant, and the relation between the rotational components cy,
and c,; of the absolute velocities ¢, and c; respectively become

€y =Cpp 2 (2.13)
18
where 1, is the radius to the guide vane outlet marked (o)
I is the radius to the inlet of the runner marked (1)

The peripheral velocity of the runner corresponding to radius r; is found by u; = r; .

Now the absolute velocity ¢; and the peripheral velocity u; are determined. The relative velocity
v is then found as one side in the parallelogram where the peripheral velocity vector u; is the
other side and the absolute velocity vector c¢; is the diagonal. These three velocity vectors are
drawn in Fig. 2.3 and form the velocity diagram of the water particle at the inlet of the runner
canal.

During the movement through the runner canal the particle changes its direction again as shown
on the figure. By this deflection an impulse force is transferred by giving the runner a torque in
the rotational direction.

The relative streamline through the runner canal is also drawn in the Fig.2.3. At the outlet edge
of the canal on this streamline the relative velocity is denoted v,. The figure shows that the
relative velocity v, has got a rather large peripheral component in the opposite direction of the
rotation. The magnitude of v, can be found by means of the continuity equation

Voary = Viadq (214)
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where a; and a; are the areas of the runner blade canal taken perpendicular to the streamline at
inlet and outlet of the canal respectively. The direction of v, is the same as the outlet direction of
the runner blades. The peripheral velocity u, = ro where r; is the radius to the marked point (2)
at the runner outlet.

The velocity diagram for the water particle at the outlet edge of the runner canal can be
determined by drawing the parallelogram with the sides u, and v, from point (2) and thereafter
the diagonal which is the resultant ¢, drawn from the same point.

The passage of the water particle from point (1) to point (2) in the runner canal, needs a certain
time interval for this movement, and simultaneously the runner rotates a certain angle. By
drawing corresponding positions of the runner canal in the rotational direction and the position
of the particle in the canal for some intermediate time intervals, the absolute path of the water
particle is found. A such path is drawn on Fig. 2.3, and the absolute velocity vector is
everywhere tangent to the absolute flow path.

The absolute as well as the relative movement of all particles in the water flow through the
turbine will behave in the same way as described for the considered water particle. In a
corresponding way the same impulse and torque is supposed to be transferred to the runner from
all water particles.

The power transfer Py to the runner from the water flow is then
Py =pQ(usc,; -u,c,,) (2.15)

As mentioned for the impulse turbine, c,%/2 represents the energy at outlet. However, during the
passage of the draft tube a fraction of this energy is recovered by retardation of the flow velocity,
but a flow friction loss occurs also in the draft tube which again means a slight reduction of the
the recovered energy.

A discussion of Equation (2.15) may be carried out in the same way as done for the Pelton
turbine. Examples are drawn in Fig. 2.3 of the velocity diagrams at inlet and outlet of the runner
respectively for three angular velocities, ® = Onormal, ® < Onormal aNd ® > Opormal- A difference
should however, be remarked that when the power is near maximum, u; and c,; nearly have the
same magnitude, while u; is approximately half of c,; for the Pelton turbine.

For regulating the discharge Q of the turbine the width of the guide vane canals must be varied.
An increase of Q means to adjust the guide vanes to a larger angle o, and a decrease of Q means
an adjustment in the opposite direction. This regulation causes corresponding changes in the
direction of the absolute velocity ¢;. Accordingly the velocity diagrams will change.

Both the variation of the angular velocity ® and the regulation of the discharge Q involve
changes in the direction and magnitude of the relative velocity vi. The relative velocity v, varies
accordingly in magnitude with the regulation of Q. Moreover the difference (ujcy; - uzcy) and
thereby also the power transfer, is entirely dependent of these changes.

The most efficient power transfer however, is obtained for the operating condition when the
relative velocity v, coincide with blade angle 3, at the runner inlet and simultaneously the
rotational component ¢, = 0. Therefore the hydraulic lay out of all reaction turbine runners are
based on the data of rotational speed n, discharge Q and net head H, for which the optimal
efficiency is wanted.
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Kaplan and Bulb turbines

The hydraulic design of Kaplan and Bulb turbine runners is quite similar while the flow direction
through the guide vane cascades is radial in Kaplan turbines and approximately axial in

Bulb turbines. This means no significant difference for an interpretation of the flow through
these turbines. Therefore an illustration of the flow through a Kaplan is valid also for a Bulb
turbine.

Fig. 2.4 shows an axial section through a Kaplan turbine with the guide vane cascade (G), runner
(R) and the shaft (S).

In the same way as for Francis turbines the consideration of the flow through the Kaplan turbine
is based on the movement of one water particle along the flow surface with the contour (a - b) as
shown on Fig. 2.4. This particle is given a flow direction in the guide vane canal before it enters
the runner canal. The particle movement through the guide vane canal and runner canal is shown
to the right in the figure. The canal section across guide vane cascade is radial (perpendicular to
the plane) along contour (a - 0) and across the runner blades the section is cylindrical along the
contour (1 - 2).

The considerations are further based on a constant guide vane direction angle o, and constant
angular velocity m. The particle flow through the turbine is quite analogous to that described for
the Francis turbine. Therefore the description is focused mainly on the velocity diagrams.

The fluid flow in the axisymmetrical hollow space between outlet of the guide vane canal
marked (o), and the inlet of the runner marked (1), is denoted as free vortex. The flow is again
assumed free of losses along the flow path. The relation between the rotational component ¢, of
the absolute velocity c, and the rotational component c,; of the absolute velocity c¢; then
becomes

¥
— o — o

Cui =Cu or c,=c¢ (2.16)
L u,

The peripheral velocities are u; = rj® and u; = r,0. By the given angle o, at the outlet of the
guide vane canal and the angle B3, at the outlet of the runner canal all data are now prepared for
drawing of the velocity diagrams at inlet and outlet of the runner. The drawing of these diagrams
is as described for Francis turbines, and in Fig. 2.4 examples are shown for three different
angular speeds, ® = ®normal, ® <Wnormal aNd ® >WOnormal-

The designation ® = noma Means again the rotational speed for which the turbine obtain the
lowest energy loss at outlet represented mainly by c,%/2. This is also the operating condition for
which the turbine obtain the highest hydraulic efficiency for the given angle o, of the guide vane
canal.

The movement that is considered for a single water particle through the turbine, is an illustration
also for all the other particles in the total water flow. As mentioned for Francis turbines that is an
assumption for Kaplan and Bulb turbines as well that all particles transfer the same impulse and
torque to the runner. The power transfer from the flow is therefore generally expressed by
Equation (2.15)

Py =pQ(u,c,, -u,c,,)

A look at Fig. 2.4 indicate also that the peripheral velocity u, = u;. The power equation then
becomes



Energy Conversion 2.11

2.17)

Pr = pQui(cur - cw2)

o, is angle of guide vane outlet

o, is angle of absolute velocity at
runner inlet

B; is blade angle at runner inlet

P, is blade angle at runner outlet

Velocity diagrams at inlet Velocity diagrams at outlet
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Fig. 2.4 Axial section through a Kaplan turbine. Velocity diagrams at inlet and outlet /3/

An interpretation of power regulation by changing the discharge Q with adjustment of the
openings of the guide vane cascade follows the same reasoning as for Francis turbines.

However,
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in Kaplan and Bulb turbines the direction of the runner blades can also be varied. This property
will be further interpreted in Chapter 3.

2.2.4 The main equation of turbines

Losses along a flow path

The flow through turbines is exposed to energy losses. In reaction turbines the flow friction and
change of flow directions in the guide vane cascade, the runner and the draft tube mainly cause

these losses. According to the turbulent flow conditions these energy losses are defined * by
2

c i ) )

G, 71 is the energy losses in the guide vane cascade
V2

G, 72 is the energy losses in the runner

2
(1+¢5) % is the energy losses in the draft tube

The coefficients ¢, C» and {3 are assumed as constants ", but their values depend on the
operating conditions of the turbine. In general this dependence behaves so that C; and £, have a
smaller variation than 3 when operating conditions changes. Values of general validity of these
coefficients cannot be given. However, at favourable operating conditions for a reaction turbine
one can estimate values of ; and ; in the region 0.06 - 0.15 and of {3 =0.1 - 0. 3.

In addition to the losses by friction and changed directions, so-called impact losses can occur at
the inlet of the runner. These losses which are designated by E% are introduced when the
relative velocity vector of the flow enters the runner with another direction than the inlet
direction of the blade.

The total sum of the losses along the flow path is
hy = %[glcf +¢,V) +(1+g3)c§+Ef] (2.18)

The available net head for the turbine is designated H,. The specific energy head transferred to
the runner is then

hg = Hy - he (2.19)

Note
When the operating conditions by regulations deviate quite a lot from the design operating
conditions, the same assumptions of the magnitude of the loss coefficients along the flow paths
do not hold completely.
The main equation of turbines
The total available power of a plant is

P, =pQgH, (2.20)
The net head H,, is defined at the inlet of the turbine referred to the level of the tail water of

reaction turbines or the outlet of the nozzle of a jet turbine.
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The power transfer from the fluid to the turbine runner is

P, =pQ(u,c,, —u,c,,) (2.21)
The ratio between these powers
P 1
N, = P_I: = E(ulcul —U,C,,) (2.22)

which is defined as hydraulic efficiency.

The following rearrangement of Equation (2.22) is called the main turbine equation

1
nH, = g(ulcul —u,C,) (2.23)

Another version of the main turbine equation is obtained by substituting for u;c,; and u,c,; from
the velocity triangles respectively

2 2 2 2 2 2

¢ ¢ Vi vi u u ¢ E
H = 1+ _1__2+ 1+ 2 'L _1__2_|_ 1+ _3+_I 224
. =(+g) ¢ 2 (1+g,) 2w 28 28 2¢ (1+¢;) 2 2 (2.24)

This last version expresses the total sum of the energy transfer in the runner and the head losses
in the guide vane cascade, the runner and the draft tube as equal to the net head H,. For Pelton
turbines however, it should be remarked that the two last terms in equation (2.24) are omitted,
1.e., these terms do not occur in the energy conversion analysis for these turbines..

2.3 A brief outline of the hydraulic design of turbines
The axial flow out of reaction turbines

By the considerations of the flow along the stream surface of revolution having a contour given
in Fig. 2.3, the main obtained result was the main turbine equation which is expressed in several
equations (2.23 - 2.24). For the conditions being the design basis of a turbine, the major
objective of the design is to obtain the same hydraulic efficiency for any flow surface of similar
properties as the surface with the contour a - b, through the turbine over the whole width of the
flow space.

To deal with this design process in detail is not the aim in this text. Therefore only a brief
description of it will be given. Principally this will be about the hydraulic designing.

One of the first steps in the design is to form the contours of the axial section of the turbine. It
may start with a trial of the form and thereafter a computational verification of the distribution of
the meridional flow velocity through the axial section. The determination of the meridional
velocity profile is based on the law of irrotational flow

de, c

__ "z 2.25
dn R ( )

where ¢, is the meridional component of the absolute velocity
n is the length parameter of the width perpendicular to the flow surface
R is the radius of the curvature of the flow path contour

When the velocity profile is determined according to equation (2.25) a control of how far this is
correct, has to be done by use of the continuity
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dQ =2mnrc dn (2.26)

equation where r is the radius to the actual position on the flow surface. The examination of a
correct flow distribution may be done in the following way. The axial flow section is thought to

Streamline control
Cross-section A - A

Q4
| \ & Q4

Q| o4/
Q4.

- == Streamiine no. _

Fig. 2.5 Axial section of a Francis runner divided in four subsections by five numbered paths /3/

be divided in a certain number of coaxial subsections through the turbine as shown on Fig. 2.5,
where the number of subsections is four. Each of these subsections shall represent a fraction of
the total discharge Q, that means one quart of Q. To obtain this the velocity profiles of ¢, from
equation (2.25) are tested and corrected by use of equation (2.26) until the discharge is the same
in all the subsections. Further it is important to check that the shape of the axial section performs
an even or smooth meridional velocity c, so that it does not increase or decrease disorderly in
magnitude along the flow path.

Runner canals and blade forms

The shaping of the blades and the runner canals is a topic task for skilled designers. This process
1s again a combination of theoretical computations, experiences, certain criteria and rules.

As one of the first steps an estimation of the number of blades has to be done. The turbine
manufacturers have normally specific criteria of their own for this choice. But there are also
some general requirements that have to be satisfied. For example the smallest openings between
blades must be large enough to let expected firm contamination in the flow run freely through.
Further the designers have to give the blades a shape based on control procedures so that the
energy conversion in the runner for the whole flow path is satisfied.

To have an idea of some details in this type of design work, it may be beneficial to have a look at
a section through a few pairs of blades and the canals they constitute. At first a glance back on
Figs. 2.3 or 2.4, gives examples of blade forms and canals. In some of these canals a streamline
is drawn. This streamline served as basis for the considerations being carried out on the
kinematics of the hydraulic energy transfer in reaction turbines. Furthermore this streamline was
assumed to represent the average velocity in the corresponding cross-sections along the canals.
Now a look in more detail on the flow conditions through the runner canals will show velocity
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distributions over the cross-sections as indicated on Fig. 2.6. To determine the velocity profile in
the respective cross-sections of the canals, the following differential equation may be used

Y pcoss 2.27)

dn

where

v is the relative velocity in the
runner canal

R is the curvature radius of the
relative streamline

o is the angular speed of the
turbine

O i1s the angle between the turbine
axis and the perpendicular to the
cone surface in which the section
through the runner blade canal are
depicted

n is the length parameter of the
width of the canal perpendicular
to the streamlines.

The estimations of the velocity
profiles according to equation (2.27)

Fig. 2.6 Section through runner blades. An example of the skew have again to be examined by means
velocity profile of the equation of continuity.

In general one can say that the blades should never be formed with particular sharp curvature. It
is considered as ideal to give the blades a smooth form between the inlet and the outlet of the
canals. This may often hit upon opposing requirements that lead to judgements and compromises
between blades of short length and sharp curvature on one side and long blades with a smooth
curvature on the other. Long canals are exposed to larger viscous friction losses than the short
ones, while short canals are exposed to larger impulse and impact losses. The best solution is to
be found somewhere in between these extreme limits. In such cases skilled designers are of
course the right experts to do the job.

Pelton buckets

The design of buckets of Pelton runners ? involves preliminary drafts of the hydraulic form of

the buckets followed by computational and experimental examination and adjustment of the draft
/2

To have an idea of how the hydraulic modelling of the buckets may be done, Fig. 2.7 shows a
calculated flow picture over a Pelton bucket at a certain moment. This analysis is based on the
fact that the accelerations of the fluid particles must be perpendicular to the surface of the water

flow in the bucket at any moment. The traces of fluid particles can then be found as shown on
the figure. The following equations are used to find the accelerations and traces:
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d’x 5
a = i +® Rcosd +20u, (2.28)

where cos¢ =x/R and R = runner radius

2
a, =%+ ®’Rsin¢ + 20u, (2.29)
codt?

Fig. 2.7 Flow traces over a Pelton bucket at a certain moment (calculated) /2/

2.4 Efficiency
The equation of hydraulic efficiency, Eq. (2.22), expresses

The power transfer to the runner is further exposed to additional losses before the resulting
power P is transferred to the generator shaft. These losses are composed of mechanical friction in
the bearings and stuffing boxes, viscous friction from the fluid between the outside of the runner
and the covers of the reaction turbines and ventilation or air friction losses of the runner in
impulse turbines.

Through the space between the covers and the outside of the runner a leakage flow also passes
according to the clearances of the labyrinth seals, from the inlet rim to the suction side of the
runner. Some energy is also required for operation of the turbine governor, tapping water for
sealing boxes, ejectors and cooling of bearings and the governor oil.
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On account of all these losses the turbine efficiency is always lower than the hydraulic
efficiency. Therefore, at the discharge Q and the power P transferred from the turbine shaft to
generator shaft, the turbine efficiency is

P P

P, pQeH,

Usually the maximum efficiency point which is represented by the best operating conditions, is
reaching values of say 7=0.93 to 0.95 of the larger and best reaction turbines. Corresponding

values estimated for the hydraulic efficiency 7, =0.95 to 0.97. For the best Pelton turbines 77,
reaches values about 0.92

2.31)
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