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CHAPTER 2 

Energy Conversion 

Introduction 

A water flow from an upper level to a lower level represents a hydraulic power potential. This 
power flow can be utilised in a water power plant by conversion to mechanical power on the 
shafts of turbines. However, some fractions of the power potential are lost partly in the plant’s 
conduits and partly in the turbines. 

In this chapter a brief description is given of the power conversion in the turbines that are 
common in hydro power stations. 

2.1 Fundamentals and definitions 

Specific energy 

The specific energy of a hydro power plant is the quantity of potential and kinetic energy which 
1 kilogram of the water delivers when passing through the plant from an upper to a lower 
reservoir. The expression of the specific energy is Nm/kg or J/kg and is designated as [m2/s2].  

In a hydro power plant as outlined on Fig. 2.1, the difference between the level of the upper 
reservoir zres and the level of the tail water ztw is defined as the gross head 

 Hgr = zres - ztw                                                                                                              (2.1) 

The corresponding gross specific hydraulic energy 

 Egr = gH gr                                                                                                                   (2.2) 

where   g    is the acceleration of gravity. 

When a water discharge Q [m3/s] passes through the plant, the delivered power is 

  Pgr = ρQgHgr                                                                                                                   (2.3) 

 where Pgr    is the gross power of the plant  
 ρ      is the density of the water 
 Q     is the discharge 

To look further on the hydropower system in Fig. 2.1 the specific hydraulic energy between the 
Sections (1) and (3) is available for the turbine. This specific energy is defined as net specific 
energy and is expressed by 

 En = gHn                                                                                                                     (2.4)                  

and the net head of the turbine Hn = 
E
g

n                      (2.5)                       
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As shown on Fig. 2.1 there are two ways of expressing the evaluation of the net head. The one 
way 

 Hn = hp + c2/2g 

And the other way 

 Hn = Hgr - 
E
g

L = Hgr - HL  

where  hp is the piezometric head 
above tailwater level measured in 
section (1), c2/2g is the velocity head 
in section (1) and EL/g   is specific 
hydraulic energy loss between 
reservoir and section (1) converted to 
head loss HL. 
 
Note. 

Some comments to the specific 
energy definitions according to 
Equations (2.2) and (2.4) should be 
mentioned. For efficiency tests of 
hydro turbines a relatively high 
exactness of the determination of the 
specific energy is required. Therefore 
an international standard exists for 
the measurements and evaluations of 

such tests. The name of it is International Standard IEC 41. 

In addition to the specifications of relevant levels this standard take into account the influences 
of: Compressibility and temperature effects of the water; the weight of the air column difference 
between the reservoir and the tail water; the difference of specific kinetic energy between 
defined sections of the system and at last that the  acceleration of gravity depends on the altitude 
and latitude. 

The specific energy expressed by putting Hgr corresponding to Fig. 2.1, in Equation (2.2) and Hn 
in Equation (2.4) respectively, is consequently approximations according to this standard. 
However, the mentioned influences are relatively small, i.e., totally of the order 1% in extreme 
cases. This means that these influences are essentially smaller than the tolerance accuracy of the 
hydraulic dimensioning of the turbomachines. Therefore the hydraulic considerations of 
calculation and design in the following sections are based on constant values of the acceleration 
of gravity and the density of water, no influence of temperature and the weight of the air column. 

2.2 Transforming hydraulic energy into mechanical energy 
2.2.1 General considerations 

Ordinary turbines. 

The discharge and the net head for turbines differ in wide ranges from one power plant to 
another. This indicates that not only different types of turbines but also a very large register of 
sizes of turbines are needed. 

 
 
 

 
       Fig. 2.1  Hydro power plant. Definition of gross head Hgr 
       and net head Hn 
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The ordinary turbine types in water power plants are distinguished in two main groups: 

 - impulse turbines 
 - reaction turbines 

This distinction is based on the difference between the two cases of energy conversion in these 
turbines. Briefly these two ways of energy conversion may be pronounced as follows. 

• Basically the flow energy to the impulse turbines is completely converted to kinetic energy 
before transformation in the runner. This means that the flow passes the runner buckets with 
no pressure difference between inlet and outlet. Therefore only the impulse forces being 
transferred by the direction changes of the flow velocity vectors when passing the buckets 
create the energy converted to mechanical energy on the turbine shaft. The flow enters the 
runner at nearly atmospheric pressure in the form of one or more jets regularly spaced around 
the rim of the runners. This means that each jet hits momentarily only a fraction or part of the 
circumference of the runner. For that reason the impulse turbines are also denoted partial 
turbines.  

 
• In the reaction turbines two effects cause the energy transfer from the flow to mechanical 

energy on the turbine shaft. Firstly it follows from a drop in pressure from inlet to outlet of 
the runner. This is denoted the reaction part of the energy conversion. Secondly changes in 
the directions of the velocity vectors of the flow through the canals between the runner blades 
transfer impulse forces. This is denoted the impulse part of the energy conversion. The 
pressure drop from inlet to outlet of the runners is obtained because the runners are 
completely filled with water. Therefore this group of turbines also have been denoted as full 
turbines. 

The most commonly used turbines today are: 

 - impulse type: Pelton turbines 
 - reaction type: Francis turbines 
    Kaplan turbines 
    Bulb turbines 

In the following sections the hydraulic energy transfer in Pelton turbines as well as the reaction 
turbines is described in more detail /1/,/3/,/4/. 
 
2.2.2 Impulse turbine - Pelton 

A section through a Pelton runner is shown in Fig. 2.2. The water jet from the nozzle hit the 
buckets that are spaced equidistant around the runner disc. In the left lower corner of the figure a 
look into a bucket in the same direction as the incoming jet is shown.  To the right of the figure a 
section through two neighbouring buckets are shown for the indicated section line A - A. In this 
section is shown how the jet flow is split symmetrically at the bucket edge and passing over the 
bucket. The jet deflection is nearly up to 180o, but limited to a little smaller angle because the 
leaving jets have to run clear of the subsequent bucket behind.  

For a net head Hn the theoretical velocity of the water jet out of the nozzle is found according to  
Bernoulli´s equation 

  c gH n1 2=                                                                                                               (2.6)  

However, an energy loss occurs in the nozzle. This influence is corrected for by a friction 
coefficient ϕ, and the velocity then becomes 
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  c gH n1 2= ϕ                                                                                                             (2.7) 

A value of the friction coefficient based on experience may be ϕ = 0.98. 

 
 
Fig. 2.2  The water jet flow into a Pelton runner. Velocity diagrams at inlet and outlet of the buckets /3/ 

The runner is assumed to rotate with a constant angular speed ω. 

One water particle is considered, for example the particle in the centre of the jet just at the 
splitting edge of the bucket and marked as position (1) on the Fig. 2.2. This bucket is drawn for a 
position corresponding just to the moment that the full jet is entering the bucket. The absolute 
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velocity c1 is known from Equation (2.7). The peripheral velocity of the runner u1 = r1ω 
corresponds to radius r1 in position (1). The direction of this velocity vector is the same as the 
tangent in position (1) of the circle with radius r1.  

When the absolute velocity c1 of the water particle and the peripheral velocity u1 in position (1) 
are known, the velocity v1 of the water particle relative to the bucket in position (1) can be 
found. The absolute velocity c1 is the geometric sum of the peripheral velocity u1 and the relative 
velocity v1. Therefore one has to draw the three velocity vectors from point (1) so that c1 is the 
diagonal in the parallelogram with u1 and v1 as sides. This parallelogram is called the velocity 
diagram of the water particle at the inlet of the bucket. 

The water particle moves over the bucket and changes its direction gradually until it leaves the 
bucket at position (2) as shown in section A - A on Fig. 2.2. During this movement the particle 
transfers its impulse force corresponding to the change from the direction of the relative velocity 
vector v1 to the relative velocity vector v2. The magnitude of v2 depends on energy losses during 
the passage of the bucket. These losses can be expressed as ζ2 2

2
2v  where ζ2 is defined as loss 

coefficient. From experience an estimated value of ζ2 = 0.06. The relation between v1 and v2 is 
found according to Bernoulli’s equation: 

  h
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In this case h1 = h2, and therefore 
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The magnitude of velocity v2 is nearly as great as v1 and has a direction as shown in position (2), 
section A - A on Fig. 2.2. The peripheral velocity u2 is assumed the same as u1 because in an 
approximate approach it is supposed that the water particle enters and leaves the runner bucket at 
the same radius of the runner. Therefore the velocity diagram may be drawn from position (2) 
with u2 and v2 as the parallelogram sides and the absolute velocity c2 as the diagonal. This 
velocity diagram shows that the magnitude of c2 is much smaller than of c1, which is just the 
main intention to obtain, because c2

2/2 is a direct measure for the loss at outlet of the turbine. 

The passage of the water particle from position (1) to position (2) lasts a certain time interval, 
and during this time the runner rotates a corresponding angle. If the corresponding positions of 
the bucket and the absolute flow path under this passage over the bucket are drawn, one get an 
absolute flow path which ends up with the velocity vector c2 as shown in section A - A on Fig. 
2.2. The absolute velocity vector is therefore tangent to this path all the way of the passage. 

The description of the movement over the bucket of one water particle is valid also for all the 
other particles of the full jet. These particles will however trace different paths, but even so, in 
practise it is assumed that the impulse force and the corresponding torque transfer to the runner 
is the same from all water particles in the jet. 

When the runner is rotating and the bucket starts splitting the jet, it gradually takes up more and 
more of the full jet area until it cut the jet completely. But immediately after this cut the 
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succeeding bucket starts splitting the jet and repeats the same behaviour as the preceding bucket. 
In the time interval between the first water particle enters and the last one leaves a bucket at a 
distance as indicated on Fig. 2.2, is covered. 

The total deflection of the jet may be made greater for a relatively large spacing between the 
buckets compared with a smaller one. Therefore the spacing between the buckets is made as big 
as possible, but not larger than to secure that all water particles will hit the bucket. 

With the same torque transfer to the runner from all water particles in the jet, the velocity 
diagrams for the inlet and outlet respectively for one of the water particles is valid for all the 
water particles of the jet. The general expression for the transferred power  PR is therefore 

  P Q u c u cR u u= −ρ ( )1 1 2 2                                                                                           (2.11) 

where  Q    is discharge 
  u1    is the peripheral velocity of the runner where the jet hit the bucket 
  u2    is the peripheral velocity of the runner at jet outlet of the runner  
  cu1      is the component of the absolute velocity c1 in the direction of u1  
  cu2   is the component of the absolute velocity c2 in the direction of u2  

As previously mentioned the peripheral velocity u1 = u2 for the Pelton turbine. Moreover it is 
suggested to insert the peripheral velocity corresponding to the runner diameter to which the 
centre line of the jet is tangent. The power equation then becomes: 

  P Qu c cR u u= −ρ 1 1 2( )                                                                                               (2.12) 

How this power varies if the rotational speed is changed, is interpreted as follows. As basis is 
ascertained that the absolute velocity c1 is constant and therefore cu1 is constant. The discharge Q 
is constant while the angular velocity ω is varied. The rotating speed u1 = r1ω. From Fig. 2.2 it is 
found that cu2  varies when ω is varied. In the case u1 = 0, i.e., the runner is at standstill, the 
power PR = 0 and cu2  ≈ - cu1. When the runner is rotating, the velocity component cu2  decreases 
as the rotational speed increases and it approximates to zero when u1 increases towards c1/2. At 
the same time it is observed that the power PR increases when u1 increases from zero.  

If u1 increases towards cu1, cu2 also increases and approaches to cu1 so that (cu1 - cu2) advances 
towards zero. In this case the power again approaches towards zero. This case corresponds to the 
run away speed.  

A closer examination shows that the transferred  power PR to the runner has its maximum value 
when cu2  is close to zero and accordingly u1 approximately like c1/2. 

Regulation of the power means to regulate the discharge Q by adjustment of the needle position 
to larger or smaller openings of the nozzles. For constant angular speed the regulations really 
cause minor or no changes of the velocity diagrams. 
 
2.2.3  Reaction turbines 

Francis, Kaplan and Bulb turbines are the reaction turbines normally applied. The transfer of 
hydraulic energy into mechanical energy is principally similar in these turbines. However, the 
hydraulic design of Francis turbines differ so much from that of Kaplan and Bulb turbines that an 
interpretation of the energy transfer will be given for each of these two groups. 
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Francis turbines 

Fig. 2.3 shows an axial section through a Francis turbine with the guide vane cascade (G) and the 
runner (R). The runner is fastened to the turbine shaft (S).  

 
 
Fig. 2.3  Axial section through a Francis turbine. Velocity diagrams at inlet and outlet of the runner /3/  

 

The energy transfer will be considered on the basis of the movement of one water particle along 
the coaxial stream surface of revolution having a contour (a - b), in the axial section through the  

turbine.  To observe the movement of this particle through the turbine,  a section across the guide 
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vanes and runner blades perpendicular to the paper plane in Fig. 2.3 is needed. This should be 
made along the contour (a - b), i.e., along (a - o) through the guide vane cascade and along (1 – 
2)  through the runner cascade. 

However, the stream surface (a - b) in Fig.2.3 has a double curvature. Therefore the surface 
cannot be unfolded unless by a transformation from the real surface to a single curved surface. In 
practise this can be done by using conform transformation method because the angles of 
geometry then are kept unchanged from the real surface to the transformed surface.  

The section through the runner cascade shown to the right on Fig. 2.3, is assumed to represent a 
conform transformation onto a conical surface tangential to the contour (1 - 2).     

It is assumed that the turbine is installed at the bottom of an open reservoir filled with water up 
to a certain level above the guide vane cascade. The guide vane direction angle αo is assumed 
constant and the runner is rotating with a certain angular speed ω and the water is filling all the 
runner canals completely. 

The consideration is assumed to start with a water particle at the inlet edge of the guide vane 
cascade. Through the guide vane canal the water particle is assumed to follow the streamline in 
the middle of the canal width as shown on the figure. The guide vanes are designed so that the 
movement of the particle is changed from the radial direction at inlet to leave the outlet edge of 
the canal with a rather large velocity component in the peripheral direction. The outlet edge of 
the guide vanes is indicated with the index (o), and the absolute velocity of the water particle at 
this edge is accordingly denoted co. The direction of co is supposed to coincide with the direction 
of the vanes at the outlet of the guide vane cascade. 

It is assumed that the water particle passes without friction through the ring chamber between the 
guide vane outlet and the inlet of the runner. Therefore it will keep an unchanged vortex 
momentum. That means rcu is constant, and the relation between the rotational components cuo 
and cu1 of the absolute velocities co and c1 respectively become 

 c c
r
ru uo
o

1
1

=                                                                                                               (2.13) 

where  ro is the radius to the guide vane outlet marked (o) 
 r1  is the radius to the inlet of the runner marked (1) 

The peripheral velocity of the runner corresponding to radius r1 is found by u1 = r1ω. 

Now the absolute velocity c1 and the peripheral velocity u1 are determined. The relative velocity 
v1 is then found as one side in the parallelogram where the peripheral velocity vector u1 is the 
other side and the absolute velocity vector c1 is the diagonal. These three velocity vectors are 
drawn in Fig. 2.3 and form the velocity diagram of the water particle at the inlet of the runner 
canal.  

During the movement through the runner canal the particle changes its direction again as shown 
on the figure. By this deflection an impulse force is transferred by giving the runner a torque in 
the rotational direction. 

The relative streamline through the runner canal is also drawn in the Fig.2.3. At the outlet edge 
of the canal on this streamline the relative velocity is denoted v2. The figure shows that the 
relative velocity v2 has got a rather large peripheral component in the opposite direction of the 
rotation. The magnitude of v2 can be found by means of the continuity equation  

  v2a2 = v1a1                                                                                                                (2.14)      
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where a1 and a2 are the areas of the runner blade canal taken perpendicular to the streamline at 
inlet and outlet of the canal respectively. The direction of v2 is the same as the outlet direction of 
the runner blades. The peripheral velocity u2 = r2ω where r2 is the radius to the marked point (2) 
at the runner outlet.  

The velocity diagram for the water particle at the outlet edge of the runner canal can be 
determined by drawing the parallelogram with the sides u2 and v2 from point (2) and thereafter 
the diagonal which is the resultant c2 drawn from the same point. 

The passage of the water particle from point (1) to point (2) in the runner canal, needs a certain 
time interval for this movement, and simultaneously the runner rotates a certain angle. By 
drawing corresponding positions of the runner canal in the rotational direction  and the position 
of the particle in the canal for some intermediate time intervals, the absolute path of the water 
particle is found. A such path is drawn on Fig. 2.3, and the absolute velocity vector is 
everywhere tangent to the absolute flow path. 

The absolute as well as the relative movement of all particles in the water flow through the 
turbine will behave in the same way as described for the considered water particle. In a 
corresponding way the same impulse and torque is supposed to be transferred to the runner from 
all water particles. 

The power transfer PR to the runner from the water flow is then 

  )cu-cu(QP 2u21u1R ρ=                                                                                               (2.15) 

As mentioned for the impulse turbine, c2
2/2 represents the energy at outlet. However, during the 

passage of the draft tube a fraction of this energy is recovered by retardation of the flow velocity, 
but a flow friction loss occurs also in the draft tube which again means a slight reduction of the  
the recovered energy. 

A discussion of Equation (2.15) may be carried out in the same way as done for the Pelton 
turbine. Examples are drawn in Fig. 2.3 of the velocity diagrams at inlet and outlet of the runner 
respectively for three angular velocities, ω = ωnormal, ω <  ωnormal and ω > ωnormal. A difference 
should however, be remarked that when the power is near maximum, u1 and cu1 nearly have the 
same magnitude, while u1 is approximately half of cu1 for the Pelton turbine. 

For regulating the discharge Q of the turbine the width of the guide vane canals must be varied. 
An increase of Q means to adjust the guide vanes to a larger angle αo and a decrease of Q means 
an adjustment in the opposite direction. This regulation causes corresponding changes in the 
direction of the absolute velocity c1. Accordingly the velocity diagrams will change. 

Both the variation of the angular velocity ω and the regulation of the discharge Q involve 
changes in the direction and magnitude of the relative velocity v1. The relative velocity v2 varies 
accordingly in magnitude with the regulation of Q. Moreover the difference (u1cu1 - u2c2) and 
thereby also the power transfer, is entirely dependent of these changes. 

The most efficient power transfer however, is obtained for the operating condition when the 
relative velocity v1 coincide with blade angle β1 at the runner inlet and simultaneously the 
rotational component cu2 ≈ 0. Therefore the hydraulic lay out of all reaction turbine runners are 
based on the data of rotational speed n, discharge Q and net head Hn for which the optimal 
efficiency is wanted.  
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Kaplan and Bulb turbines 

The hydraulic design of Kaplan and Bulb turbine runners is quite similar while the flow direction 
through the guide vane cascades is radial in Kaplan turbines and approximately axial in  
Bulb turbines. This means no significant difference for an interpretation of the flow through 
these turbines. Therefore an illustration of the flow through a Kaplan is valid also for a Bulb 
turbine. 

Fig. 2.4 shows an axial section through a Kaplan turbine with the guide vane cascade (G), runner 
(R) and the shaft (S).  

In the same way as for Francis turbines the consideration of the flow through the Kaplan turbine 
is based on the movement of one water particle along the flow surface with the contour (a - b) as  
shown on Fig. 2.4. This particle is given a flow direction in the guide vane canal before it enters 
the runner canal. The particle movement through the guide vane canal and runner canal is shown 
to the right in the figure. The canal section across guide vane cascade is radial (perpendicular to 
the plane) along contour (a - o) and across the runner blades the section is cylindrical along the 
contour (1 - 2). 

The considerations are further based on a constant guide vane direction angle αo and constant 
angular velocity ω. The particle flow through the turbine is quite analogous to that described for 
the Francis turbine. Therefore the description is focused mainly on the velocity diagrams.  

The fluid flow in the axisymmetrical hollow space between outlet of the guide vane canal 
marked (o), and the inlet of the runner marked (1), is denoted as free vortex. The flow is again 
assumed free of losses along the flow path. The relation between the rotational component cuo of 
the absolute velocity co and the rotational component cu1 of the absolute velocity c1 then 
becomes 

 c c
r
ru uo
o

1
1

=     or  c c
u
uu uo

o
1

1

=                                                                                 (2.16) 

The peripheral velocities are u1 = r1ω and u2 = r2ω. By the given angle αo at the outlet of the 
guide vane canal and the angle β2 at the outlet of the runner canal all data are now prepared for 
drawing of the velocity diagrams at inlet and outlet of the runner. The drawing of these diagrams 
is as described for Francis turbines, and in Fig. 2.4 examples are shown for three different 
angular speeds, ω = ωnormal, ω <ωnormal and ω >ωnormal.   

The designation ω = ωnormal means again the rotational speed for which the turbine obtain the 
lowest energy loss at outlet represented mainly by c2

2/2. This is also the operating condition for 
which the turbine obtain the highest hydraulic efficiency for the given angle αo of the guide vane 
canal. 

The movement that is considered for a single water particle through the turbine, is an illustration 
also for all the other particles in the total water flow. As mentioned for Francis turbines that is an 
assumption for Kaplan and Bulb turbines as well that all particles transfer the same impulse and 
torque to the runner. The power transfer from the flow is therefore generally expressed by 
Equation (2.15) 

 )cu-cu(QP 2u21u1R ρ=    

A look at Fig. 2.4 indicate also that the peripheral velocity u2 = u1. The power equation then 
becomes 
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 PR = ρQu1(cu1 - cu2)                                                                                                   (2.17) 

                                                                                         

 

 
 
 
 
 
Fig. 2.4  Axial section through a Kaplan turbine. Velocity diagrams at inlet and outlet /3/ 

An interpretation of power regulation by changing the discharge Q with adjustment of the 
openings of the guide vane cascade follows the  same reasoning as for Francis turbines.  
However,  
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in Kaplan and Bulb turbines the direction of the runner blades can also be varied. This property 
will be further interpreted in Chapter 3. 

2.2.4 The main equation of turbines 

Losses along a flow path 

The flow through turbines is exposed to energy losses. In reaction turbines the flow friction and 
change of flow directions in the guide vane cascade, the runner and the draft tube mainly cause 
these losses. According to the turbulent flow conditions these energy losses are defined /4/ by 
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        is the energy losses in the guide vane cascade 
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         is the energy losses in the runner 
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c
   is the energy losses in the draft tube 

The coefficients ζ1, ζ2 and ζ3 are assumed as constants /4/, but their values depend on the 
operating conditions of the turbine. In general this dependence behaves so that ζ1 and ζ2 have a 
smaller variation than ζ3 when operating conditions changes. Values of general validity of these 
coefficients cannot be given. However, at favourable operating conditions for a reaction turbine 
one can estimate values of ζ1 and ζ2 in the region 0.06 - 0.15 and of ζ3 = 0.1 - 0. 3. 

In addition to the losses by friction and changed directions, so-called impact losses can occur at 
the inlet of the runner. These losses which are designated by EI

2, are introduced when the 
relative velocity vector of the flow enters the runner with another direction than the inlet 
direction of the blade. 

The total sum of the losses along the flow path is 

 hL = [ ]1
2

11 1
2

2 2
2

3 3
2 2ς ς ςc v c EI+ + + +( )                                                                                    (2.18) 

The available net head for the turbine is designated Hn. The specific energy head transferred to 
the runner is then  

 hR = Hn - hL                                                                                                               (2.19) 
 
Note 

When the operating conditions by regulations deviate quite a lot from the design operating 
conditions, the same assumptions of the magnitude of the loss coefficients along the flow paths 
do not hold completely. 
 
The main equation of turbines 

The total available power of a plant is 

  P QgHn n= ρ                                                                                                             (2.20) 

The net head Hn is defined at the inlet of the turbine referred to the level of the tail water of 
 

reaction turbines or the outlet of the nozzle of a jet turbine. 
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The power transfer from the fluid to the turbine runner is 

 P Q u c u cR u u= −ρ ( )1 1 2 2                                                                                            (2.21) 

The ratio between these powers  
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which is defined as hydraulic efficiency. 

The following rearrangement of Equation (2.22) is called the main turbine equation 

 )cucu(
g
1H 2u21u1nh −=η                                                                                           (2.23) 

Another version of the main turbine equation is obtained by substituting for u1cu1 and u2cu2 from 
the velocity triangles respectively 
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This last version expresses the total sum of the energy transfer in the runner and the head losses 
in the guide vane cascade, the runner and the draft tube as equal to the net head Hn. For Pelton 
turbines however, it should be remarked that the two last terms in equation (2.24) are omitted, 
i.e., these terms do not occur in the energy conversion analysis for these turbines.. 
 

2.3 A brief outline of the hydraulic design of turbines 

The axial flow out of reaction turbines 

By the considerations of the flow along the stream surface of revolution having a contour given 
in Fig. 2.3, the main obtained result was the main turbine equation which is expressed in several 
equations (2.23 - 2.24). For the conditions being the design basis of a turbine, the major 
objective of the design is to obtain the same hydraulic efficiency for any flow surface of similar 
properties as the surface with the contour a - b, through the turbine over the whole width of the 
flow space. 

To deal with this design process in detail is not the aim in this text. Therefore only a brief 
description of it will be given. Principally this will be about the hydraulic designing. 

One of the first steps in the design is to form the contours of the axial section of the turbine. It 
may start with a trial of the form and thereafter a computational verification of the distribution of 
the meridional flow velocity through the axial section. The determination of the meridional 
velocity profile is based on the law of irrotational flow 

 
dc
dn

c
R

z z= −                                                                                                               (2.25) 

where cz   is the meridional component of the absolute velocity 
 n    is the length parameter of the width perpendicular to the flow surface 
 R   is the radius of the curvature of the flow path contour  

When the velocity profile is determined according to equation (2.25) a control of how far this is 
correct, has to be done by use of the continuity  
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 dQ rc dnz= 2π                                                                                                          (2.26) 

equation where r is the radius to the actual position on the flow surface. The examination of a 
correct flow distribution may be done in the following way. The axial flow section is thought to  

 

 
 
 

Fig. 2.5   Axial section of a Francis runner divided in four subsections by five numbered paths /3/ 
be divided in a certain number of coaxial subsections through the turbine as shown on Fig. 2.5, 
where the number of subsections is four. Each of these subsections shall represent a fraction of 
the total discharge Q, that means one quart of Q. To obtain this the velocity profiles of cz from 
equation (2.25) are tested and corrected by use of equation (2.26) until the discharge is the same 
in all the subsections. Further it is important to check that the shape of the axial section performs 
an even or smooth meridional velocity cz so that it does not increase or decrease disorderly in 
magnitude along the flow path. 

Runner canals and blade forms 

The shaping of the blades and the runner canals is a topic task for skilled designers. This process 
is again a combination of theoretical computations, experiences, certain criteria and rules. 

As one of the first steps an estimation of the number of blades has to be done. The turbine 
manufacturers have normally specific criteria of their own for this choice. But there are also 
some general requirements that have to be satisfied. For example the smallest openings between 
blades must be large enough to let expected firm contamination in the flow run freely through. 
Further the designers have to give the blades a shape based on control procedures so that the 
energy conversion in the runner for the whole flow path is satisfied. 

To have an idea of some details in this type of design work, it may be beneficial to have a look at 
a section through a few pairs of blades and the canals they constitute. At first a glance back on 
Figs. 2.3 or 2.4, gives examples of blade forms and canals. In some of these canals a streamline 
is drawn. This streamline served as basis for the considerations being carried out on the 
kinematics of the hydraulic energy transfer in reaction turbines. Furthermore this streamline was 
assumed to represent the average velocity in the corresponding cross-sections along the canals. 
Now a  look in more detail on the flow conditions through the runner canals will show velocity 
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distributions over the cross-sections as indicated on Fig. 2.6. To determine the velocity profile in 
the respective cross-sections of the canals, the following differential equation may be used 

δω−−= cos2
R
v

dn
dv

                                                                                                                  (2.27)                  

 

where 

v   is the relative velocity in the  
     runner canal 
R  is the curvature radius of the 
     relative streamline 
ω is the angular speed of the 

turbine 
δ   is the angle between the turbine 
     axis and the perpendicular to the  
     cone surface in  which the section  
     through the runner blade canal are  
     depicted 
n   is the length parameter of the 
     width of the canal perpendicular  
     to the streamlines. 

The estimations of the velocity 
profiles according to equation (2.27) 
have again to be examined by means 
of the equation of continuity. 

In general one can say that the blades should never be formed with particular sharp curvature. It 
is considered as ideal to give the blades a smooth form between the inlet and the outlet of the 
canals. This may often hit upon opposing requirements that lead to judgements and compromises 
between blades of short length and sharp curvature on one side and long blades with a smooth 
curvature on the other. Long canals are exposed to larger viscous friction losses than the short 
ones, while short canals are exposed to larger impulse and impact losses. The best solution is to 
be found somewhere in between these extreme limits.  In such cases skilled designers are of 
course the right experts to do the job. 
 
Pelton buckets 

The design of buckets of Pelton runners /2/ involves preliminary drafts of the hydraulic form of 
the buckets followed by computational and experimental examination and adjustment of the draft 
/2/. 

To have an idea of how the hydraulic modelling of the buckets may be done, Fig. 2.7 shows a 
calculated flow picture over a Pelton bucket at a certain moment. This analysis is based on the 
fact that the accelerations of the fluid particles must be perpendicular to the surface of the water  
flow in the bucket at any moment. The traces of fluid particles can then be found as shown on 
the figure. The following equations are used to find the accelerations and traces:

 
 
Fig. 2.6  Section through runner blades. An example of the skew  
               velocity profile 
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 a
d x
dt

R ux y= + +
2

2
2 2ω φ ωcos                                                                                   (2.28)

          where  cosφ = x/R  and  R  =  runner radius                                                        

 a d y
dt

R uy x= + +
2

2
2 2ω φ ωsin                                                                                   (2.29)       

 a d z
dtz =

2

2                                                                                                                  (2.30) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.7   Flow traces over a Pelton bucket at a certain moment (calculated) /2/ 

 
2.4 Efficiency 

The equation of hydraulic efficiency, Eq. (2.22), expresses                       

 ηh
R

n

P
P

=  

The power transfer to the runner is further exposed to additional losses before the resulting 
power P is transferred to the generator shaft. These losses are composed of mechanical friction in 
the bearings and stuffing boxes, viscous friction from the fluid between the outside of the runner 
and the covers of the reaction turbines and ventilation or air friction losses of the runner in 
impulse turbines. 

Through the space between the covers and the outside of the runner a leakage flow also passes  
according to the clearances of the labyrinth seals, from the inlet rim to the suction side of the 
runner. Some energy is also required for operation of the turbine governor, tapping water for 
sealing boxes, ejectors and cooling of bearings and the governor oil. 
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On account of all these losses the turbine efficiency is always lower than the hydraulic 
efficiency. Therefore, at the discharge Q and the power P transferred from the turbine shaft to 
generator shaft, the turbine efficiency is 

 η
ρ

= =
P
P

P
QgHn n

                                                                                                  (2.31) 

Usually the maximum efficiency point which is represented by the best operating conditions, is 
reaching values of say η = 0.93 to 0.95 of the larger and best reaction turbines. Corresponding 
values estimated for the hydraulic efficiency ηh = 0.95 to 0.97. For the best Pelton turbines ηmax  
reaches values about 0.92 
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