Conceptual Design Review

Group 12: Bevel Gear Test Bed

David Jones
Brad Childers
Darrel Anderson
Andrew Dalesandro

<u>Customer</u>

- Harris Corporation
 - International communications and information technology company
 - Serves government and commercial markets in more than 150 countries
 - Headquartered in Melbourne, Florida
 - Annual revenues of \$5.3 billion and 16,500 employees
 - About 7,000 Engineers and Scientists

Problem Statement

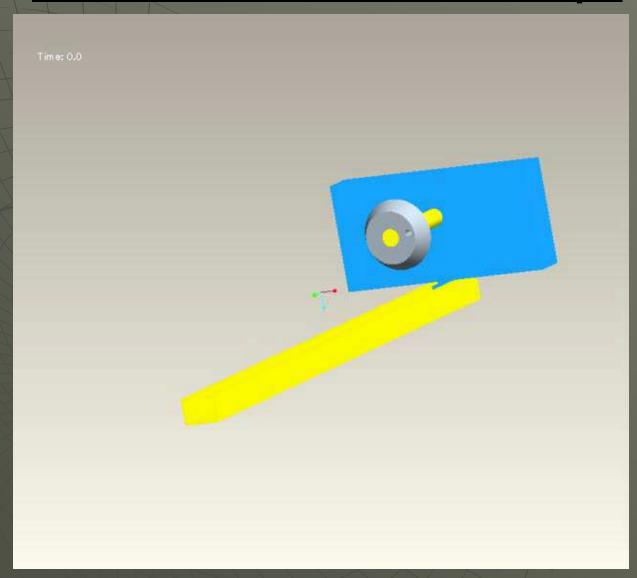
- Harris Corporation ran tests on bevel gears needed for a project
 - They did not achieve the expected standards
- Possible problems
 - Misalignment
 - Anodic coating failure
 - Test bed issues: vibration, heat generation
- Our team needs to design a very accurate bevel gear test bed
 - Used to test a variety of bevel gear sizes and materials

Project Scope

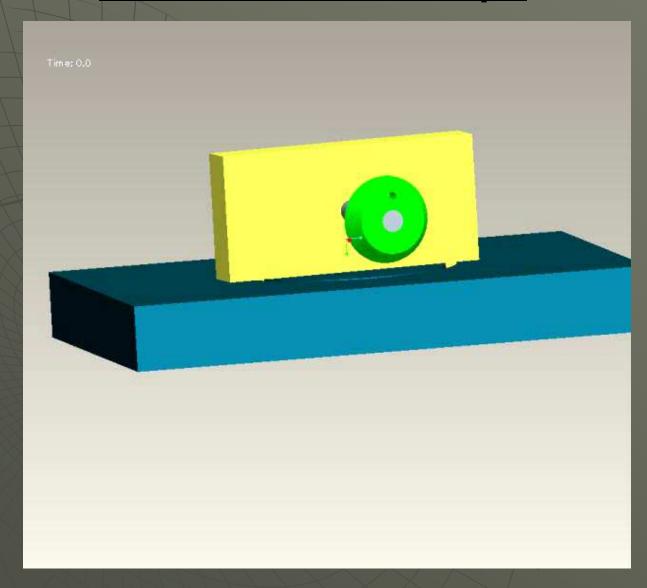
- Methodology
 - Research previous Test Bed designs and the associated calculations
 - Brainstorm on whether to modify existing design or start from scratch
 - Create actual design of the Test Bed
 - Decide whether to buy parts or to machine our own
 - Build a working Test Bed and make adjustments as necessary

Customer Needs

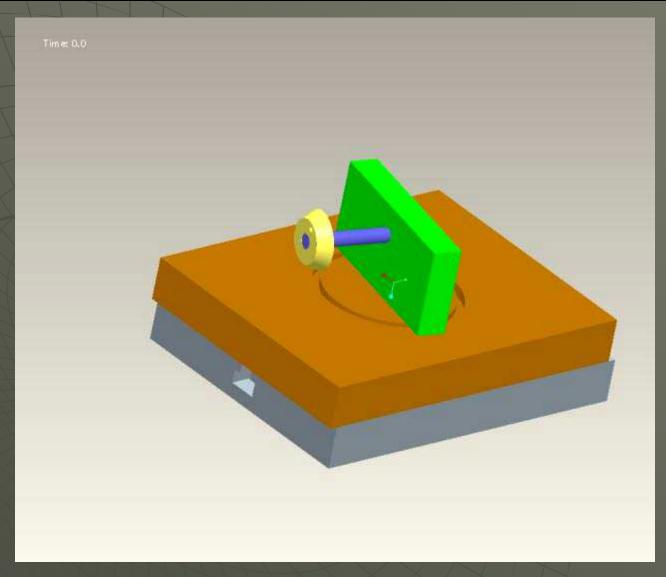
- Main focus of our design
 - Adjustable features
 - Mounting Distance
 - Speed
 - Torque
 - Surface Treatments
 - Shaft Angles
 - Vibration Detection
- Some extended goals
 - Heat Generation
 - Test non-90 degree bevel gears

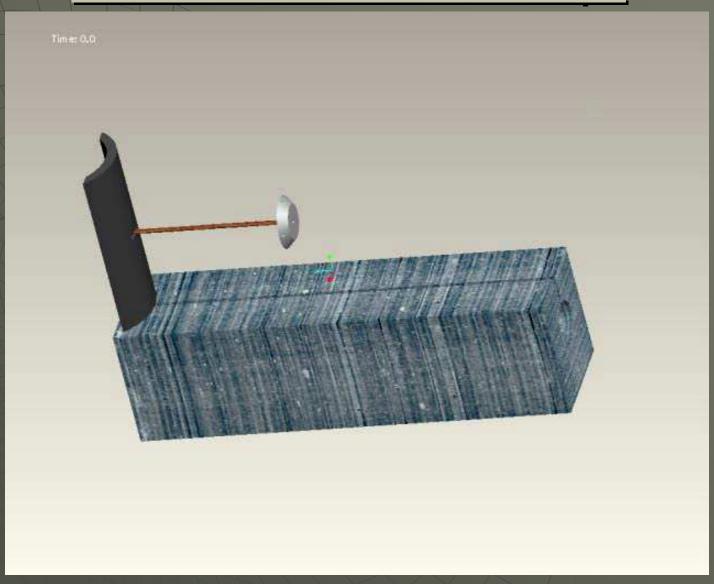

Product Specifications

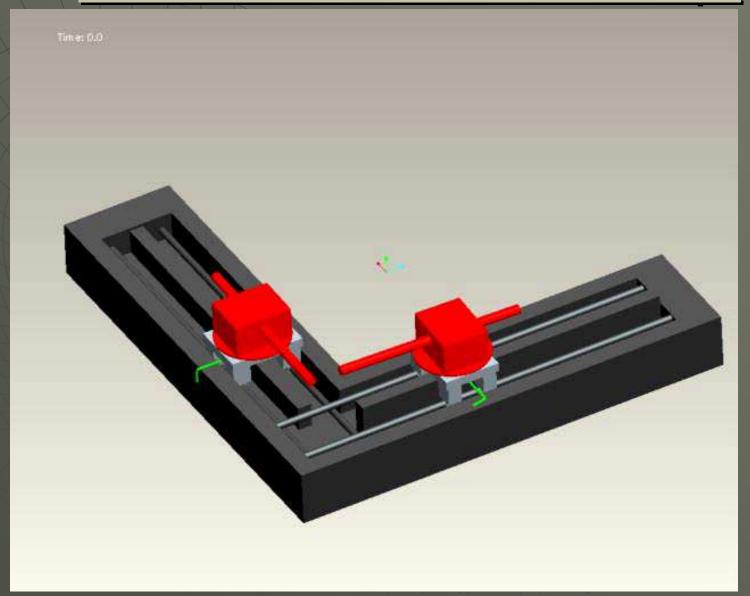
Specifications	U.S. Units	SI Units				
Variable Torque	0 inlb - 50 inlb.	0 Nm - 5.6 Nm				
Variable Speed	0 rpm – 100 rpm	0 rad/s - 10.4 rad/s				
Gear Size Range	1/3 in 5 in.	8.467 mm – 127 mm				
Mounting Distance Accuracy	+/- 0.001 in.	+/- 0.0254 mm				
Variable Shaft Angle	+/- 0.5 degrees (0.001 degree increments)	+/- 0.00873 rad				

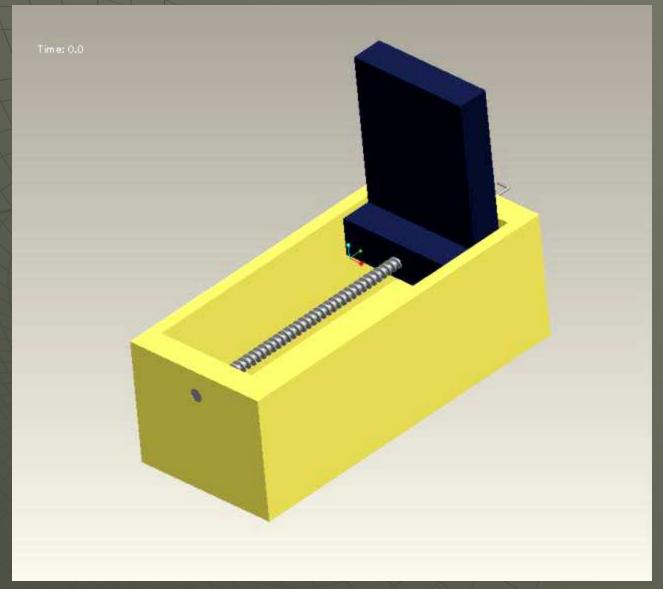

Conceptual Design

- Drawer Slider Concept
- Rotator Concept
- Combination Rotator Slider Concept
- Curved Wall Concept
- Rack and Pinion Concept
- Worm Gear Concept
- Shaft and Gear Connection Concept


Drawer Slider Concept


Rotator Concept


Combination Rotator Slider Concept


Curved Wall Concept

Rack and Pinion Concept

Worm Gear Concept

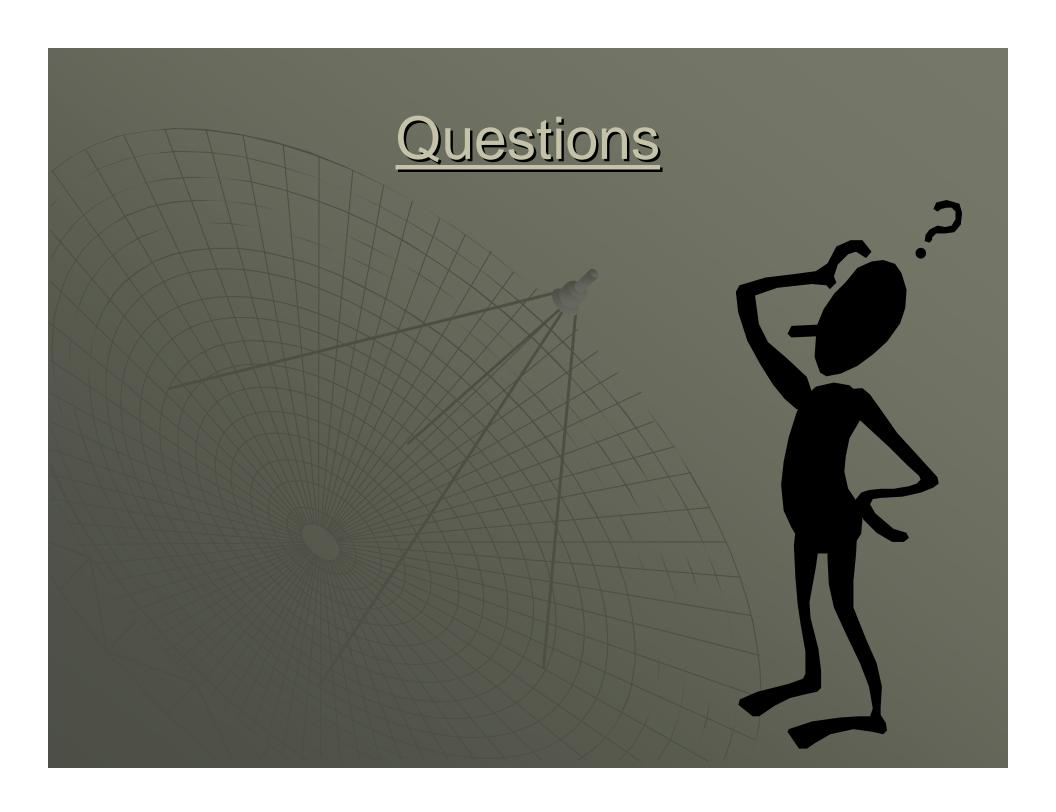
Shaft And Gear Connection Concept

- Variable Shaft Diameters with Adjustable Chuck
 - Easy to Operate
 - High Reliability & Repeatability
 - High Cost
- Constant Shaft Diameter, Variable Adapters
 - Set-screw connection method
 - Low cost
 - Easy to machine and assemble
 - May not be rigid enough → Could lead to wobble
 - Self-tightening threads
 - Low cost
 - Easy to machine and assemble
 - Very rigid → No wobble

Quality Function Deployment

			Engineering Requirements									
		rotational velocity	resistive torque	elastic modulus	anodic coating thickness	weight	deflection	yield strength	Mounting Shaft Distance	cost		
nts	Machinable			Х	Х	Х		Х		X		
Requirements	Durability						Х	×		X		
₫	Looks Good			Х	Х					X		
Rec	Accuracy				Х	Х	Х	Х	Х	Х		
ner	Reliability	×	×			Х	Х	×	Х	×		
Customer	Assembled	Х	Х	Х	Х							
2	Power Source	X	Х							×		
	Units											
		rpm	inlb.	MPa	μm	lb.	mm	MPa	in.	\$		
		1000 100 ≤1500 Engineering Targets										
		Engineering Targets										

Concept Selection


			Concepts													
Criteria		Weight	Drawer Slider		Rotator		Slider-Rotator		Curved Wall		Rack and Pinion (Pinion Driven)		Rack and Pinion (Rack Driven)		Worm Gear	
1 1			Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating x Weight	Rating	Rating x Weight
	Machinability	10%	4	0.40	3	0.30	3	0.30	1	0.40	4	0.40	4	0.40	4	1.40
	Looks Good	5%	3	0.15	3	0.15	2	0.10	4	0.20	4	0.20	4	0.20	5	0.25
	Cost	10%	3	0.30	2	0.20	1	0.10	2	0.20	2	0.20	2	0.20	2	0.20
	Reliability	25%	2	0.50	2	0.50	2	0.50	2	0.50	4	1.00	3	0.75	4	1.00
	Ease of Assembly	10%	4	0.40	4	0.40	3	0.30	3	0.30	2	0.20	2	0.20	3	0.30
	Accuracy	40%	2	0.80	2	0.80	2	0.80	2	0.80	4	0.60	4	1.60	5	2.00
Total Score		2.55		2.35		2.1		2.1		3.6		3.35		4.15		

Conclusion

- Final selection
 - Worm Gear Concept
 - Best Rating
 - Accuracy
 - Looks good
 - Machinability
 - Reliability
 - Average rating
 - Cost
 - Ease of Assembly

Future Plans

- Design a more accurate Pro-E model
 - Worm gear
 - Accurate walls
- Part selection and cost analysis
 - Primary focus
 - Accelerometers
 - Power source
 - Bearings
 - Power output controller and display
 - Select bevel gears and shafts
 - Secondary focus
 - Travel to Melbourne, FL to visit Harris
 - Update project plan

