Water Spray System for Water Intrusion Testing

Group 17: Scott McMurry Justin Collins Shane Boland

Overview

- Project Scope
- Product Design
- System Control
- Risk Assessment
- Expenses
- Future Work

Diagram of current system at Cummins

Project Background

Problem

• Water intrusion in the electronic fuel systems on engines

Objective

Design a water spray system

Motivation

 System to be used during endurance tests on various engines to simulate the effect of driving over puddles

Product Specifications

- Adjustable spray settings
- Simultaneous coverage of entire spray area
 - Spray area: 6 ft long x 3 ft high
- Robust Structure
- Portability
- Ease of assembly
- Flow rate: ~ 1 gpm

Block diagram of spray coverage area (6 ft x 3 ft on each side 3 ft above the ground)

Product Design

Structural

- General structure made from extruded aluminum
 - Slotted beams allow for easy assembly
 - Lightweight
- Wide base provides ample stability

- Sharkbite Fittings
 - Approved for CPVC and PEX Tubing
 - Ideal for easy assembly
 - Disconnect Clip provides for easy disassembly
 - Result in secure, rigid joints

- Nozzle array
 - Square-pattern brass spray nozzles
 - 75° spray pattern
 - Each side of structure features 6 nozzles arranged into 2 rows of 3 nozzles wide
 - Provide complete coverage of 18 sq ft spray area

- Piping Design
 - "H"-configuration
 - Mechanism to encourage uniform filling across width of array
 - PEX Tubing
 - Allows for more flexibility in system

Ball Valves

 1" CPVC Ball Valves for manual closing of either side of structure

- Solenoid Valves
 - 24 VAC
 - Adjustable flow control
 - Can be manually calibrated using attached flowmeter
 - Each activated at appropriate times using micro controller

 Pump Selection

 1/3 HP Centrifugal Pump with motor

Pump Recirculation System

- City water source does not provide ample flow rate
- 15 gallon reservoir used to maintain water supply
- Float valve within reservoir to prevent overflow
- Water recirculation back to reservoir between sprays

System Control

- Embedded system
 - Performs dedicated functions
 - System is self-reliant
- Micro controller
 - DRAGON-12 USB Board
 - Receives program from PC, executes program functions
- Solenoid valves
 - 24 VAC adjustable flow valves
- Pump
 - 24 VAC Relay for 110 VAC at 10 A

Expenses

Part	Quantity	Price
Solenoid Valves	2	111.83
Centrifugal Pump	1	374.55
Versa-Mount Water Flowmeter	1	64.23
Additional Valves	2	114.9
MicroDragon Project Module	1	55
Misc. Electrical Components	3	29.35
Brackets for extruded Aluminum	12	98.88
CPVC Piping	40 ft	53.16
Flexible Tubing	8 ft	44.24
Sharkbite Fittings	23	333.67
Misc. Pipe Fittings		200
	Total	1478.54

Safety/Risk Assessment

Mechanical

- Pump runtime/fatigue failure
- Water Interaction with electrical components

Environmental

- Cummins facilities use separators to remove possible oil from water
- Water waste significant for extremely long tests

Future Work

- Water Collection/Separator
 - For a 1000 hour test spraying for 15 seconds every 15 minutes
 - Results in approximately 284 gallons of water per day
 - Incorporate water collector/separator to eliminate or reduce significantly water waste
 - Was not required in product specifications
 - Budget constraints would not allow for incorporation into current design

Functionality Testing

Full System Test

Hyperterminal Simulation

Acknowledgements

- Mr. Alex Dugé
 - Cummins- Experimental Mechanics
- Mr. Andrew Zac-Williams
 - Cummins- Structural Analyst
- Dr. Kareem Ahmed
 - Faculty Advisor
- Dr. Rob Hovsapian
- Dr. Srinivas Kosaraju

Questions