Water Spray System Midterm Report

Group 17: Scott McMurry Justin Collins Shane Boland

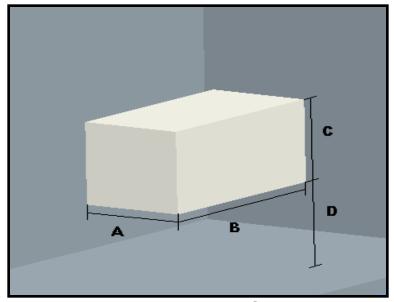
Overview

- Project Scope
- Changes to Design
- System Control
- Risk Assessment
- Expenses
- Future Work

Diagram of current system at Cummins

Project Background

- Problem
 - Water interaction with engines hindering performance
- Objective
 - Design a water spray system
- Motivation
 - System to be used in water intrusion tests on engines and their electrical components


Project Scope Changes To Design System Control

Risk Assessment

Expenses

Product Specifications

- Adjustable spray settings
- Simultaneous coverage of entire spray area
 - Spray area: 6 ft long x 3 ft high
- Robust Structure
- Portability
- Ease of assembly
- ▶ Flow rate: ~ 1 gpm

Block diagram of spray coverage area (6 ft x 3 ft on each side 3 ft above the ground)

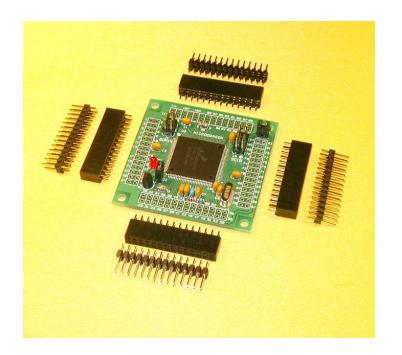
Project Scope Changes To Design System Control

Risk Assessment

Expenses

Design Updates

- Tilt adjustment feature removed
 - ~90% of Cummins engines are inline style
- Flow-meter incorporated along with adjustable flow valve
 - \circ 3-18 gpm +/- 5%
- Valves to cut off water supply to either side of system
- ▶ 15+ gal reservoir with float valve

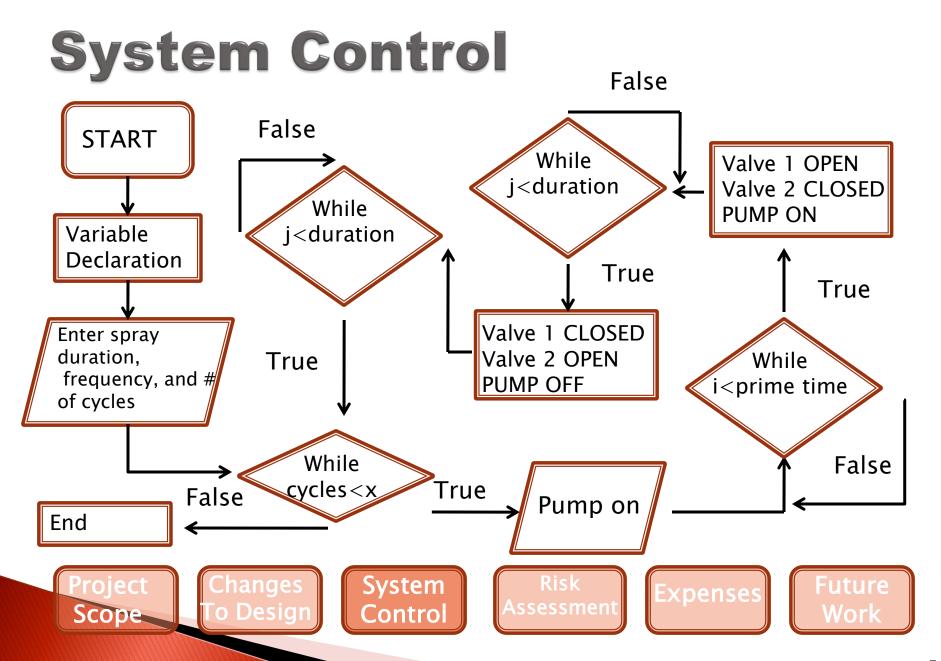

Project Scope Changes To Design System Control

Risk Assessment

Expenses

System Control

- Embedded system
 - Performs dedicated functions, PC's can perform multiple non-related functions
 - System is self-reliant
- Micro controller
 - MicroDRAGON USB
 - Receives program from PC, executes program functions
 - Sends signals to valves and pump, returns data to PC
- Solenoid valves
 - 24 VAC adjustable flow valves
- Pump
 - 24 VAC Relay for 110 VAC at 10 A



Project Scope

Changes To Design System Control

Risk Assessment

Expenses

System Control

Program Window Simulation

```
CUMMINS WATER SPRAY SYSTEM
FLORIRDA STATE UNIVERSITY: COLLEGE OF ENGINEERING
Enter spray duration <secs>: 10
Enter spray frequency <mins> : 10
Enter test duration <# cycles> : 1000
Review test parameters:
Spray duration:
                          Spray frequency:
                                                             Test cycles:
Test run time <hrs>: 169.44
EXECUTE? (Y/N)
EXAMPLE
Status : Test in progress
Time Remaining: 43 hrs 23 mins
Test controls :
<P> Pause
 Q> Quit
   Restart
```

Project Scope Changes To Design System Control

Risk Assessment

Expenses

Risk Assessment

- Mechanical
 - Pump runtime/fatigue failure
 - Pump output
- Environmental
 - Cummins facilities use separators to remove possible oil from water
 - Water waste minimal given run time and flow rate
 - Electrical system damage from water

Project Scope

Changes To Design System Control

Risk Assessment

Expenses

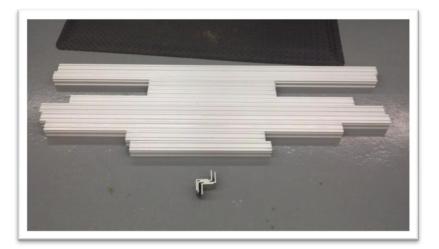
Expenses

Part	Quantity	Price
Solenoid Valves	2	111.83
Centrifugal Pump	1	374.55
Versa-Mount Water Flowmeter	1	64.23
Additional Valves	2	114.9
MicroDragon Project Module	1	55
Misc. Electrical Components	3	29.35
Brackets for extruded Aluminum	12	98.88
CPVC Piping	40 ft	53.16
Flexible Tubing	8 ft	44.24
Sharkbite Fittings	23	333.67
Misc. Pipe Fittings	6	48.73
Test Nozzles	3	17.94
	Total	1346.48

Remaining Expenses: 11 Nozzles, Resevoir, Pipe fittings

Project Scope Changes To Design

System Control


Risk Assessment

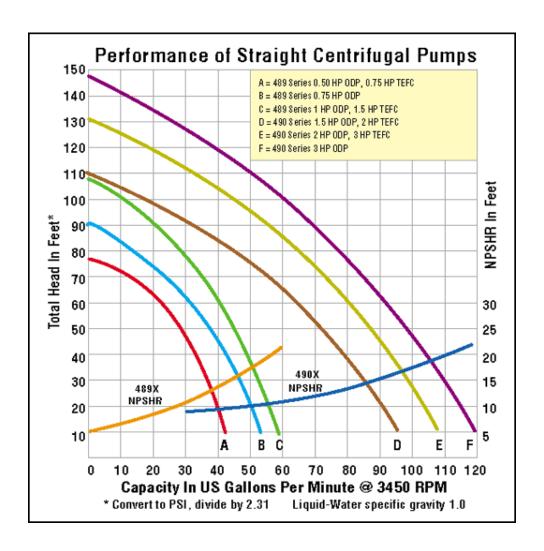
Expenses

Accomplished Work

- Pseudo code to be implemented and tested with valves and relay
- ▶ 80/20 structures for right and left arrays

Pictures

Disassembled Structure


Assembled Structure

Pump

1/3 HP pump motor connected to drip-proof, centrifugal pump

Future Work

- Current Tasks
 - Nozzle Testing
 - Verify nozzle specifications experimentally
 - System control code development
 - Configure program for real time tracking
- Overall Project Plan for Spring Semester
 - Plan to have electronics tested and assembly completed before 1st of March

Project Scope Changes To Design System Control

Risk Assessment

Expenses

Acknowledgements

- Mr. Alex Dugé
 - Cummins- Experimental Mechanics
- Mr. Andrew Zac-Williams
 - Cummins- Structural Analyst
- Dr. Kareem Ahmed
 - Faculty Advisor
- Dr. Rob Hovsapian
- Dr. Srinivas Kosaraju

Questions