Water Spray System Spring Progress

Group 17: Scott McMurry Justin Collins Shane Boland

Overview

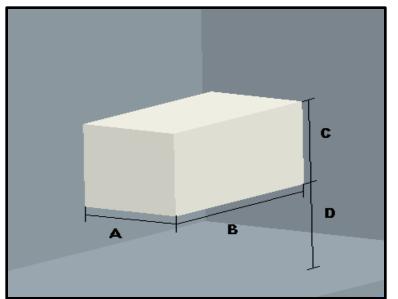
- Project Scope
- Changes to Design
- System Control
- Risk Assessment
- Expenses
- Future Work

Diagram of current system at Cummins

Project Background

Problem

- Water interaction with engines hindering performance
- Objective
 - Design a water spray system


Motivation

 System to be used in water intrusion tests on engines and their electrical components

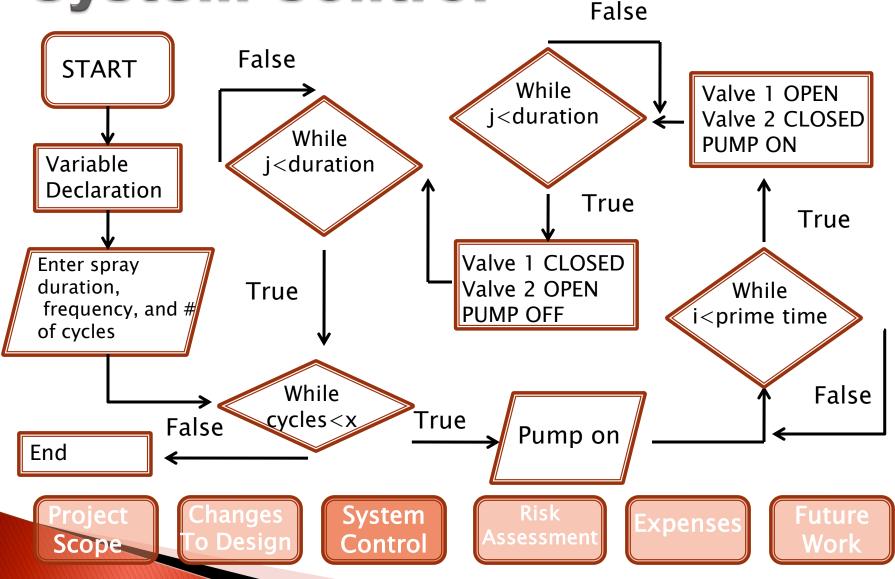
Product Specifications

- Adjustable spray settings
- Simultaneous coverage of entire spray area
 - Spray area: 6 ft long x 3 ft high
- Robust Structure
- Portability
- Ease of assembly
- Flow rate: ~ 1 gpm

Block diagram of spray coverage area (6 ft x 3 ft on each side 3 ft above the ground)

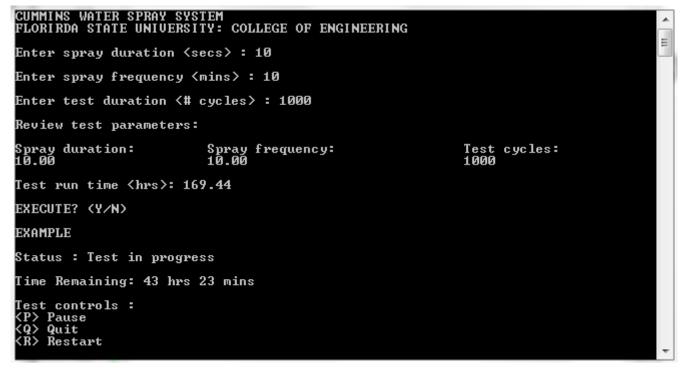
Changes to Fall Design

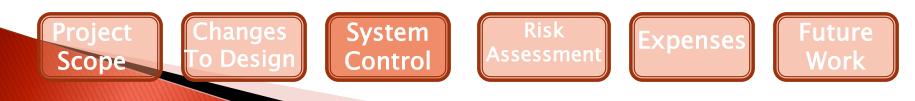
- Tilt adjustment feature removed
 ~90% of Cummins engines are inline style
- Flow-meter incorporated along with adjustable flow valve
 - 3-18 gpm +/- 5%
- Valves to cut off water supply to either side of system
- 15+ gal reservoir with float valve



System Control

- Embedded system
 - Performs dedicated functions, PC's can perform multiple non-related functions
 - System is self-reliant
- Micro controller
 - MicroDRAGON USB
 - Receives program from PC, executes program functions
 - Sends signals to valves and pump, returns data to PC
- Solenoid valves
 - 24 VAC adjustable flow valves
- Pump
 - 24 VAC Relay for 110 VAC at 10 A




System Control

System Control

Program Window Simulation

Risk Assessment

Mechanical

- Sharkbite fittings attach and detach with ease if they need replacing
- System shut down feature to be included

Environmental

- Cummins facilities use separators to remove possible oil from water
- Water waste minimal given run time and flow rate

Expenses

Part	Quantity	Price
Solenoid Valves	2	111.83
Centrifugal Pump w/Adj. Discharge	1	801
Versa-Mount Water Flowmeter	1	64.23
Additional Valves	2	114.9
MicroDragon Project Module	1	55
Misc. Electrical Components	3	29.35
Brackets for extruded Aluminum	12	98.88
CPVC Piping	40 ft	53.16
Flexible Tubing	8 ft	44.24
Sharkbite Fittings	23	333.67
Misc. Pipe Fittings	6	48.73
Test Nozzles	3	17.94
	Total	971.93

Remaining Expenses: Pump, 11 Nozzles, Resevoir, Pipe fittings

Future Work

Current Tasks

- Nozzle Testing
 - Verify nozzle specifications experimentally prior to purchase of all nozzles
- System control code development
 - Configure program for real time tracking
 - Test with microcontroller on valves, relay
- Overall Project Plan for Spring Semester
 - Plan to have finished testing and assembled before 1st of March

Acknowledgements

- Mr. Alex Dugé
 - Cummins- Experimental Mechanics
- Mr. Andrew Zac-Williams
 - Cummins- Structural Analyst
- Dr. Kareem Ahmed
 - Faculty Advisor
- Dr. Rob Hovsapian
- Dr. Srinivas Kosaraju

Questions/Comments