The Artemis Project

Lunar Regolith Excavator Student Competition ME Team #8 / ECE Team #1

James Dickson

Anthony Gantt

Christopher Loftis

Jennifer Schrage

Nick Stroupe

Lindsey Alan Williams

Jeremy Nagorka

Florida A&M University (Florida State University

NASA's Lunabotics Mining Competition

Overview

- Excavation Subsystem
 - Bucket
 - Conveyor
 - Plow/Bumper
- Locomotion Subsystem
 - Chassis
 - Tracks
- Power Subsystem
- Control Subsystem
- Navigation Subsystem
- Sensors Subsystem

Bucket Design

- Density of Regolith 1.5 g/cm³
- Desired capacity 100 kg
- Required Volume 0.066 m³
- Our Bucket
 - Capacity 0.075 m³
 - Height 0.3 m
 - Length 1.0 m
 - Width 0.6 m
 - Material Al 6061
 - Weight 9 kgs

Bucket Unloading

Florida A&M University (Florida State University)

Plow and Bumper

- Integrated regolith channeling and rock deflection
- Coupled to conveyor for maximum efficiency
- Linearly actuated engagement
- Constrained angle using parallel 4-bar

Chassis

- Triangulated space frame
- Enclosure of dust sensitive systems
- Heatsink for protected components
- Ensure weight balance

Plow/Chassis Optimization

- Plow/Bumper
 - Reduce complexity
 - Determine best angle of attack
 - Test control of regolith collection
- Chassis
 - Reduce weight
 - Increase stiffness
 - Lower center of mass
 - Ease component access

Tracked Locomotion System

- Center Frame with torsion arm for tension
 - k=150 (Nm/deg)
- Motor housed in main body
 - Drive shaft to sprockets
- Total mass of each track
 - ~12 kg with tread

Chain and Sprocket Assembly

- Chain Assembly
 - Variation of a bike chain
 - 15 cm tread surface at center
 - Individually adjustable connector links
 - Pin Joint allows large circular deformations

Power System Schematic

Artemis Power System Specifications			
Part	Туре	Weight	Price
Switching Regulator	DE-SWADJ	N/A	\$12 x2
Lead-Acid Batteries	Powersonic 12V 18AH	13.10 LBS x3	\$51.95 x3
Accessories	Wires/Fuses/Switches/Capacitors	N/A	\$50.00
	Total:	~40 LBS	\$229.85

Power System Simulation

Ser lies

Maximum Current Analysis

The combined current of I1 and I2 must never exceed 15A, at any given time.

Current Restrictions:

I1+I2 < 15A

Power System Operation

PHASE 1: Plow EngagePHASE 2: Regolith CollectionPHASE 3: Regolith Deposit into Collector

Device	PHASE 1	PHASE 2	PHASE 3
Drive motor 1	ON	ON	OFF
Drive motor 2	ON	ON	OFF
Conveyor Motor	OFF	ON	OFF
Linear Actuator 1 (Plow Lift)	ON	OFF	OFF
Linear Actuator 2 (Bucket Lift)	OFF	OFF	ON
MCU/Sensors	ON	ON	ON

Maximum Device Specifications in accordance to phase and 15A draw limit:

Device	Maximum Allowable Current Draw	Maximum Power Draw
Drive Motor 1	5A	180W
Drive Motor 2	5A	180W
Conveyor Motor	2A	72W
Linear Actuator 1	2A	72W
Linear Actuator 2	10A	360W
MCU/Sensors	2A	12W

Brushless DC Motor Control

- Brushed motors are more efficient but are harder to control
 - Commutation needs to be done manually
- Generally three phase with three position sensors that monitor rotor position

MOSFET Motor Driver

Navigation Procedure

- From start, proceed on random or preset course
- Once out of starting square, start digging
- When bin is full, move to center of area and face collector
- Move towards collector using beacons for alignment
- When at wall of collector, dump regolith
- Reset inertial navigation and repeat

IR Beacons

- Self-contained beacons running IR LEDs off normal batteries
- Used to allow robot to find and align with collector using infrared detectors
- Need to modulate LEDs
- Use a 555timer to generate a square wave

Inertial Navigation Sensors

- Accelerometer and gyroscope provide position and direction sensing independent of the robots environment
 - Accelerometers measure acceleration in X Y and Z axises
 - Gyroscopes measure pitch, yaw, and roll
- Accelerometer pseudocode running once per second:
- Xvelocity = (Xacc prv_Xacc)
- Xposition = (Xvelocity prv_Xvelocity)
- prvXacc = Xacc
- prv_Xvelocity = Xvelocity
 - Essentially integrate acceleration twice to get position
- Use yaw for steering, pitch and roll not needed

Weight Sensor

- The robot needs to know when its bin is full and to return to dump
 - Taking apart a cheap digital scale gives a force sensor so
 the robot can know the weight of the regolith it has
 - The scale works as a wheatstone bridge, one resistor varies with the weight(deformation) and changes the voltage Vg

Sensors

- Navigational Sensors
 - IR Sharp Sensor
 - IR Beacon Sensor
 - Inertial Measurement Unit (IMU)
- Current Senor
- Pressure Senor
 - Bumper Sensor
 - Weight Sensor

IR Sharp Sensor

Plocida State University

· Flocida A&M University

Fig.5 Analog Output Voltage vs. Distance to Reflective Object

Distance to reflective object L (cm)

IR Beacon Sensor

Inertial Measurement Unit

 Three axis inertial navigation sensor

• Single Gyroscope

Bumper and Weight Sensor

Tactile Bump Sensor Circuits

Weight Sensor Circuit

Cost Analysis

- IR Sharp Sensor
- IR Beacon Detector
- IR LEDs (850 nm 100pcs)
- IR LEDs (940 nm 100pcs)
- IMU
- Gyroscope
- Bumper Senor
- Weight Sensor

\$9.95 \$14.95 \$7.00 \$6.00 \$149.95 \$11.95 \$1.50 \$40.00

Questions

