The ARTEMIS Project

Lunar Regolith Excavator Student Competition

ME Team #8 / ECE Team #1

James Dickson

Jeremy Nagorka

Anthony Gantt

Jennifer Schrage

Christopher Loftis

Nick Stroupe

Alan Williams

The Lunabotics Mining Competition

Lunabotics Mining Competition

- Designed to engage and retain students in STEM disciplines
- Provide a competitive environment in which may result innovative ideas and solutions that could be applied to actual lunar excavation

Max Weight	80 kg
Max Power Supply	40 V
Max Current	15 A
Min Excavation Material	150 kg
Max width/length	1.3 m
Max height	2.4 m
Max setup time	10 minutes
Operation time	30 minutes

 Table 1. Competition Specifications

Figure 1. Artist's rendering of lunar excavation, taken from Lunabotics Mining Competition announcement

Needs Analysis Flow Diagram

Figure 2. Needs analysis flow diagram for ARTEMIS Project

Robotic Platform Design

Figure 3. Robot design schematic

Circuit Block Diagram

Figure 4. Circuit block diagram

System Breakdown

Figure 5. System breakdown structure

Concept Generation

- An initial design, overall design idea was proposed, then brainstorming for each subsystem
- Assigned specific qualities desired for final platform, then evaluated

Figure 6. Top 3 concepts for each subsystem

Concept Selection

		Concepts											
		Tracks		4 Wheels		6 Wheels		C-Legs		iSprawl Legs		Worm	
Specifications	Importance Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Traction	20.00%	5	1	2	0.4	3	0.6	0	0	1	0.2	4	0.8
Stability	10.00%	5	0.5	3	0.3	4	0.4	1	0.1	2	0.2	0	0
Maneuverability	15.00%	4	0.6	3	0.45	2	0.3	1	0.15	5	0.75	0	0
Speed	15.00%	2	0.3	4	0.6	3	0.45	1	0.15	5	0.75	0	0
Power	10.00%	5	0.5	3	0.3	4	0.4	2	0.2	1	0.1	0	0
Cost	10.00%	3	0.3	5	0.5	4	0.4	2	0.2	1	0.1	0	0
Simplicity	10.00%	2	0.2	5	0.5	4	0.4	3	0.3	1	0.1	0	0
Low Maitenance	5.00%	2	0.1	4	0.2	3	0.15	5	0.25	1	0.05	0	0
Dust Resistance	5.00%	2	0.1	4	0.2	3	0.15	5	0.25	1	0.05	0	0
	Score		3.6		3.45		3.25		1.6		2.3		0.8
	Selection		1st		2nd		3rd		-		-		-

Table 2. Example Concept Selection Matrix for the Locomotion Subsystem

 Note: House of Quality primarily used for weighting, comparison, and selection

System Overview

Figure 7. Overall platform design with subsystems

Excavation Subsystem Design

- Excavation Subsystem Components:
 - 1. Plow piles regolith onto conveyor belt
 - 2. Conveyor Belt transports regolith for deposit in bucket
 - 3. Bucket holds regolith until delivery to holding bin

Figure 8. Excavation subsystem components and flow of regolith

Plow

 Integrated regolith channeling and rock deflection
 Coupled to conveyor for maximum efficiency
 Linearly actuated engagement

•Constrained angle using parallel 4-bar

Figure 10. Top view of plow design

Figure 9. Side view of plow (top) and integration of plow (bottom)

Paddle Belt Conveyor

- Design Analysis
 - Assumptions and Constants
 - Inclination angle of 45 degrees
 - Uniform load distribution
 - Belt velocity of 1 m/s
 - Maximum regolith density of 1.91 g/cm³
 - Each scoop excavates a volume of 448 cm³
 - Belt coefficient of friction of 0.3
 - Bearing coefficient of friction of 0.0015
 - Results
 - Angular velocity of 26.2 rad/s
 - Angular acceleration of 13.1 rad /s²
 - Max load of 4.28 kg
 - Required motor torque of 1.59 N*m
 - Total mass of 8.4 kg
 - Total mass of conveyor and load of 12.68 kg

Figure 11. Design drawing of conveyor belt and isometric view of final design

Paddle Belt Conveyor

- Tensioning Mechanism
 - One mechanism per side
 - One DOF prismatic joint
 - Integrated bearing housing
 - Single bolt adjustment
 - Clockwise rotation
 - » Increase belt tension
 - Counter-clockwise rotation
 - » Decrease belt tension

Figure 12. Tensioning mechanism on conveyor belt

Regolith Retaining Bin

- Density of Regolith 1.5 g/cm³
- Desired capacity 100 kg
- Required Volume 0.066 m³
- Our Bucket
 - Capacity Volume 0.075 m³
 - Height 0.3 m
 - Length 1.0 m
 - Width 0.5 m
 - Material Al 6061
 - Weight 9 kgs

Figure 13. Isometric view of bucket design

Figure 14. Example of bucket dumping from side view

Locomotion Subsystem Design

- Center Frame with torsion arm for tension
 k=150 (Nm/deg)
- Motor housed in main body with drive shaft to rear sprockets
- Total mass of each track ~12 kg with tread

Figure 15. Isometric view of track frame

Locomotion Subsystem Design

- Chain Assembly
 - Variation of a bike chain
 - 15 cm tread surface at center
 - Individually adjustable connector links
 - Pin Joint allows large circular deformations

Figure 16. Isometric view of driving sprocket with example of treads

Power Subsystem Design

Artemis Power System Specifications			
Part	Туре	Weight	Price
Switching Regulator	DE-SWADJ	N/A	\$12 x2
Lead-Acid Batteries	Powersonic 12∨ 18AH	13.10 LBS x3	\$51.95 x3
Accessories	Wires/Fuses/Switches/Capacitors	N/A	\$50.00
	Total:	~40 LBS	\$229.85

Table 3. ARTEMIS Power System Specifications

Power Subsystem Simulation

Power Subsystem Overview

PHASE 1: Plow EngagePHASE 2: Regolith CollectionPHASE 3: Regolith Deposit into Collector

PHASE 1	PHASE 2	PHASE 3
ON	ON	OFF
ON	ON	OFF
OFF	ON	OFF
ON	OFF	OFF
OFF	OFF	ON
ON	ON	ON
	PHASE 1 ON ON OFF ON OFF ON	PHASE 1 PHASE 2 ON ON ON ON ON ON OFF ON ON OFF OFF OFF OFF OFF OFF OFF ON OFF ON OFF

Table 4. Device operation according to sequence

Device	Maximum Allowable Current Draw	Maximum Power Draw
Drive Motor 1	5A	180W
Drive Motor 2	5A	180W
Conveyor Motor	2A	72W
Linear Actuator 1	2A	72W
Linear Actuator 2	10A	360W
MCU/Sensors	2A	12W

Table 5. Maximum device specifications in accordance to phase and 15A draw limit

Microcontroller

- 8 bit AVR vs 32 bit ARM vs Single-board Computer
 - AVR- slower, tons of support, very easy to program, 5V I/O
 - ARM- faster, more complicated, 3.3V I/O
 - Single-board- expensive, complete overkill
 - Chose MCBSTM32, an ARM Cortex M3 board from Keil
 - 32 bit 72MHz
 - 2 SPI, 2 I2C, 3 UART, 16 ADC
 - 48 General I/O
 - Free, Donated by ARM

Figure 19. Example of ARM Microcontroller

Telerobotic Interface

- Remote operation of robot
 - At minimum: Start and stop
- Network provided which adds two second delay

Figure 20. Diagram of communications during competition

- Link Robot to WAN Wirelessly
 - WiFi- 58Mbps, Complicated, High Power, Most Expensive
 - Xbee- 0.25Mbps, Simple, Medium Power, Cheapest
 - Bluetooth- 1Mbps, Medium Complexity, Low Power, Medium Cost

Interfacing Diagram

Navigation Subsystem Design

- From start, proceed on random or preset course
- Once out of starting square, start digging
- When bin is full, move to center of area and face collector
- Move towards collector using beacons for alignment
- When at wall of collector, dump regolith
- Reset inertial navigation and repeat

Figure 22. Diagram of Competition setup

Navigation Sensors Diagram

Figure 23. Navigation Sensor flow chart

Inertial Measurement Unit

Inertial Navigation Sensors

- Accelerometer and gyroscope provide position and direction sensing independent of the robots environment
 - Accelerometers measure acceleration in X, Y, and Z axis
 - Gyroscopes measure pitch, yaw, and roll

Figure 26. Three axis inertial navigation sensor

IR Sharp Sensor

Analog output voltage V₀ (V)

Figure 27. Configuration of IR Sharp sensors on platform

Figure 28. IR Sharp Sensor

Figure 29. Analog output voltage vs. distance to reflective object

IR Beacon and Sensor

Flocida A&M University

Bumper and Weight Sensor

Tactile Bump Sensor Circuits

Figure 31. Bump Sensor Circuit

Figure 31a. Bump Sensor

Figure 32a. Weight sensor in situ

Cost Analysis of System

The Artemis Project Budget Breakdown				Power			\$229.85
Part Description	QTY	Price	Total	Switching Regulator	2	\$12.00	\$24.00
Excavation	Excavation		\$1 400 07	Lead Acid Batteries	3	\$51.95	\$155.85
Aluminum Plate 1/8"x12"x24"		¢77.8	/ ¢01.26	Accessories (Wires, Fuses, etc)	1	\$50.00	\$50.00
Aluminum Rod 3/16"x72"	-	\$22.0 \$2.6	4 ,91.30 1 \$2.61	Microcontroller and Communications			\$110.00
Linear Actuator Plow	-	\$512.0	0 \$512.00	ARM Microcontroller*	1	\$0.00	\$0.00
Linear Actuator, Bucket	-	\$804.0	0 \$804.00	Accessories (Wires, Breadboard, etc.)	1	\$75.00	\$75.00
Radial ball bearings, 4 pack	3	\$8.9	5 \$26.85	Bluetooth Adapters	1	\$35.00	\$35.00
Tensioner Belt	1	\$5.4	5 \$5.45	Navigation			\$242.80
Washer	2	\$0.3	5 \$0.70	IR Sharp Sensor	1	\$9.95	\$9.95
Frame Mounting Hardware	1	. \$5.7	8 \$5.78	IR Beacon Detector	1	\$14.95	\$14.95
Tensioner Mounting bolts, 5 pack	1	. \$5.7	8 \$5.78	IR LEDs (850 nm 100pcs)	100	\$0.07	\$7.00
Aluminum 1.5" tube	1	\$34.7	6 \$34.76	IR LEDs (940 nm 100 pcs)	100	\$0.06	\$6.00
Aluminum 3" tube	1	\$28.9	4 \$28.94	IMU	1	\$149.95	\$149.95
Aluminum 1" tube	1	. \$17.8	3 \$17.83	Gyroscope	1	\$11.95	\$11.95
Paddlebelt	1	\$63.2	4 \$63.24	Bumper Sensor	2	\$1.50	\$3.00
Radial Gear	1	\$17.5	8 \$17.58	Weight Sensor	1	\$40.00	\$40.00
Locomotion			\$1,384.85	Total Cost of System			\$3,884.38
Aluminum Block, 8"x8"12"	1	\$435.4	0 \$435.40	Miscellaneous Costs (Shipping, etc)	1	-	\$300
Aluminum Rectangular Tube, 2"x4"x72"	3	\$54.4	3 \$163.29				
Aluminum Rod, 1"x60"	1	\$20.9	2 \$20.92				
Aluminum Rod, 1/2"x72"	2	\$6.2	2 \$24.88				
Bearings, 1"	8	\$12.2	3 \$97.84				
Rubber Sheet, 1-1/2"x24"x6'	2	\$71.1	0 \$142.20				
Maxon Brushless DC Motor	2	\$196.7	0 \$393.40				
Roller, 40mmx50mm	2	\$31.9	0 \$63.80				
Brass Flat plate, 3/32"x3/4"x72"	2	\$21.5	6 \$43.12				

Lifecycle

Conclusions

Questions and Comments

The ARTEMIS Project