

Dimitrios Arnaoutis¹

Alessandro Cuomo¹

Eduardo Krupa²

Gustavo Krupa²

David Williams¹

Jordan Taligoski¹

April 12, 2012

¹ Florida State University; ² Universidade Federal de Itajubá

Contents

Competition Introduction

- Competition Guidelines
- Concept Descriptions
 - Concept Selection Procedures
- System Diagram
- Engineering Economics
- Tests and Specifications
- Verification of Competition Guidelines
- Conclusions

Project Specifications

- SAE Aero Design East Competition:
 - Give students real life engineering situation
 - Design a high-lift low weight RC aircraft
 - Compete with other teams and universities

Aircraft Dimension Requirement

 Maximum combined length, width, and height is 225 inches

• Gross Weight Limit

- No more than fifty five pounds (55 lbs.) with payload and fuel.
- Engine Requirements
 - Magnum XLS-61a

Competition Description

- 1 Design Report (50 points)
- 2 Technical Presentation (50 points)
 - Payload loading/unloading
- 3 Flight Round
 - Empty Weight (10% bonus)
 - Successive flight rounds
 - Flight Score = Lifted Weight x 4
- Overall Score = Design Report Score + Oral Presentation Score + Flight Score

- Aircraft must make one full 360° loop of the field
 - Disqualification if flown into "No Fly" zones x2
- Take off distance: < 61m</p>
- Landing distance: < 122m</p>

- Aircraft must land within specified landing zone
 - Multiple passes of field is allowed
 - No "touch and go" landings

Overall Layout Designs

Standard

Flying Wing

Minimalist

Canard

Bi-Plane

Pros

- Highly Stable in flight
- Large area in fuselage for payload
- Reliable design throughout time

A

Pros

- Most aerodynamic
- High Lift

Pros

- Lightweight
- Less material
- Cheaper
- Simple design

Pros

•

- High lift
 - High stability

Pros

- Highly maneuverable
- Strong structure

Cons

• High Drag

Cons

 Unstable in flight

Cons

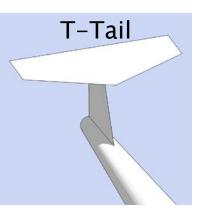
- Unstable with high wind gusts
- Questionable structural integrity

Cons

No room for error in design of wing sizes


Cons

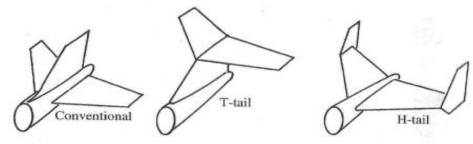
Wings interfere with one another


Design Decision Matrix

		Standard Design		"Flying Wing" Design		Minimalist Design		Canard Wing Design		Bi-Plane Design	
Selection Criteria	Weight	Rating	Weighed Score	Rating	Weighed Score	Rating	Weighed Score	Rating	Weighed Score	Rating	Weighed Score
Potential Lift	20%	7	1.4	9	1.8	8	1.6	8	1.6	7	1.4
Potential Drag	10%	4	0.4	8	0.8	9	0.9	2	0.2	3	0.3
Durability	15%	9	1.35	5	0.75	3	0.45	7	1.05	7	1.05
Cost	10%	5	0.5	5	0.5	8	0.8	3	0.3	4	0.4
Ease of Build	5%	5	0.25	6	0.3	8	0.4	4	0.2	4	0.2
Potential Flight Score	40%	8	3.2	6	2.4	7	2.8	7	2.8	7	2.8
	100%		7.1		6.55		6.95		6.15		6.15

Tail Designs

- Roots attached to fuselage
- High effectiveness for vertical tail
- Vertical tail height limits overall dimension constraint



- Reduced aerodynamic interference
- Horizontal tail can be lengthened for short boom designs
- Requires stronger & heavier vertical stabilizer

H-Tail	

- Uses the vertical surfaces as endplates for the horizontal tail
- Vertical surfaces can be made less tall, adding to allowable wing length
- Complex control linkages required

Tail Design Decision Matrix

Figure of Merit	Weighting Factor	Conventional	T-tail	H-tail
Drag	0.20	3	2	1
Ease of Build	0.10	5	3	2
Maneuverability	0.15	3	4	5
Stability	0.35	4	4	5
Weight	0.20	4	4	3
Total	1.00	3.75	3.5	3.5

Tail Booms

Conventional:

- Commonly used in commercial passenger aircraft as cargo area
- Design
 - Flush with fuselage
- Strength:
 - High torsion resistance
- Weight:
 - Moderate weight in comparison

Pipe:

- Used in model aircraft and small helicopters
- Design:
 - Best done with carbon fiber
- Strength:
 - Low torsion resistance
- Weight:
 - Lightest design

Twin Boom:

- Design:
 - Greatly affects fuselage design
- Strength:
 - Great torsion resistance
 - High stability
- Weight:
 - Heaviest design

Tail Boom Decision Matrix

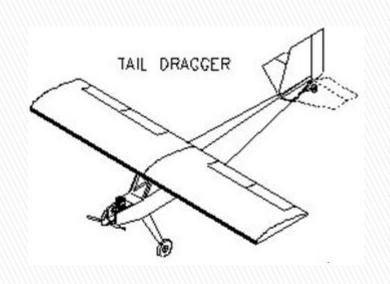
Figure of Merit	Weighting Factor	Conventional	Pipe	Twin Boom
Drag	0.20	4	3	2
Ease of Build	0.10	3	4	1
Maneuverability	0.15	5	5	5
Stability	0.35	4	1	5
Weight	0.20	3	5	1
Total	1.00	3.85	2.6	3.2


Wing Design

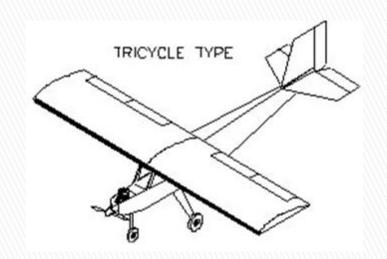
- •Several wing geometries were studied using computational methods
- •Custom designed wing profile
- •The final wing design is a tapered wing with the same profile.
- •Designed to generate a lift of 165N
 - -Design Factor 1.25

Wing Characteristics

- Wing span = 2.8 m
- Root Chord = 0.32 m
- Tip Chord = 0.16 m
- M.A.C = 0.28 m
- Wing Area = 0.728 m^2
- Aspect Ratio = 10


Wing Analysis

Elliptical Distribution along the wing span

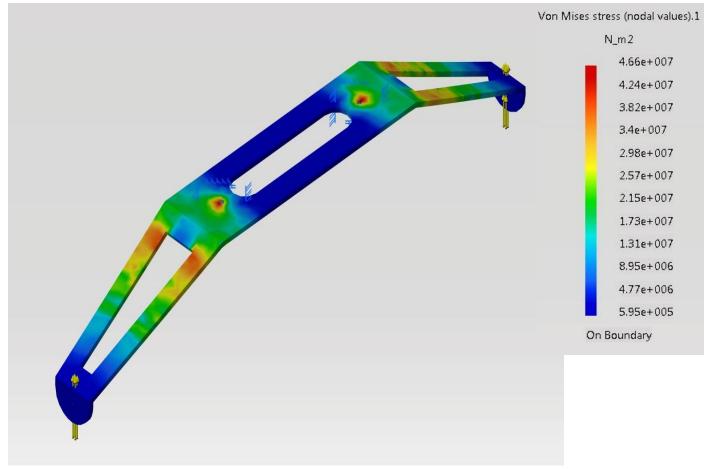

Using ANSYS the maximum static deflection measured at the spar tips is 27.4mm. - Structural safety factor 1.8

Landing Gear Design and Layout

Tail dragger style layout

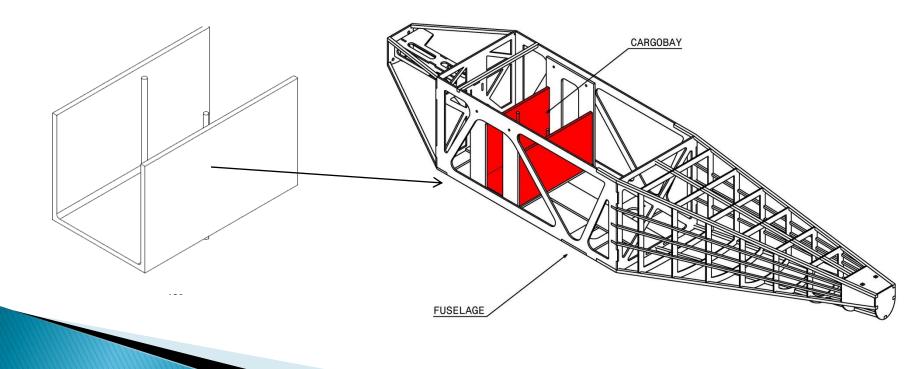
- Unstable steering
- Allows the prop to strike the ground
- Lowers aircraft's overall height

Tricycle style layout

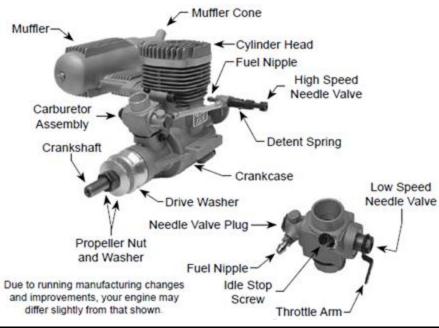

- Stable steering
- Does not allow the prop to strike the ground
- Easier to land

Landing Gear (ctd)

•F.E.M. used through *CATIA* software


• Made out of Aluminum 6061

 Used with nylon wheels and ball bearings

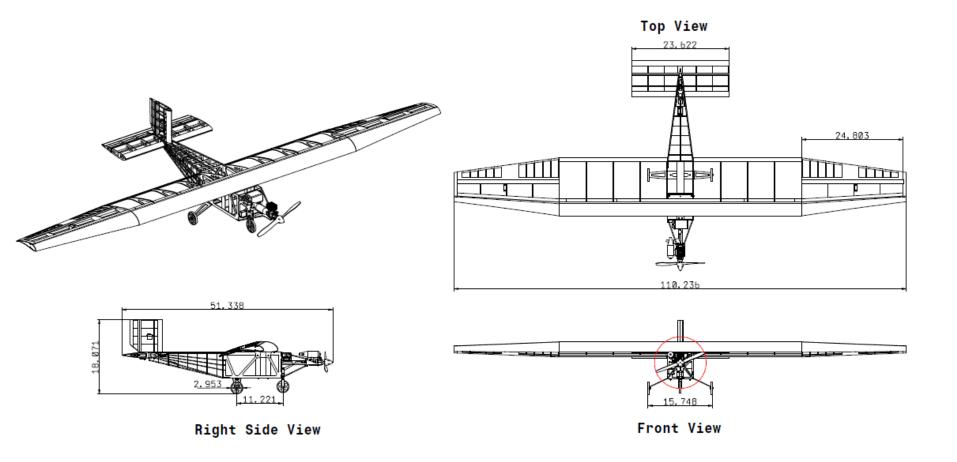


Cargo Bay & Payload

Material	Density (g/cm ³)	Cost (USD/kg)	Volume (cm ³)	Cost (USD)
Steel Alloy	7.85	0.5	2022.4	7.94
Stainless Alloy	8	2.15	1984.5	34.13
Gray Cast Iron	7.3	1.2	2174.8	19.05
Copper Alloy	8.5	3.2	1867.7	50.8

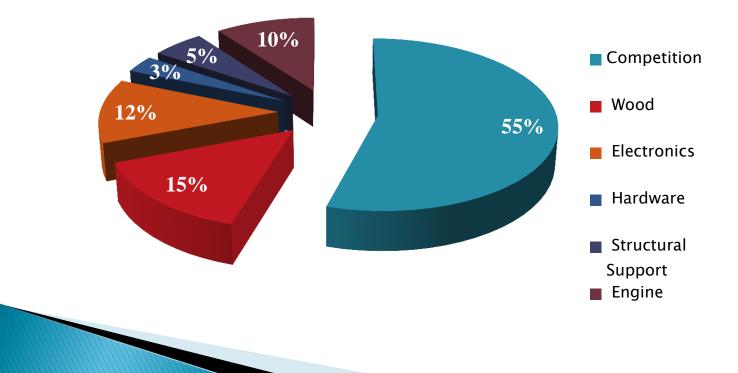
Power Plant

Propeller	13x6 JXF	13x6 MAS	11x6 JZ	11x7 APC
Rotations [RPM]	9210	8610	10690	12090
Mass[g]	28.7	25	26.8	50.7
Measured Thrust	26 [N]	25 [N]	30 [<i>N</i>]	32 [N]


SPECIFICATIONS AND FEATURES

Displacement	9.94cc (0.607ci)
Bore	24mm
Stroke	22mm
Practical RPM	2,000 - 16,000rpm
Weight w/Muffler	22.5oz

- ABC Piston and Sleeve
- · Dual Ball Bearing-Supported Crankshaft
- Dual Bushing-Supported Connecting Rod
- Lightweight, High Power Output
- · Rear Needle Valve Assembly for Safe Tuning

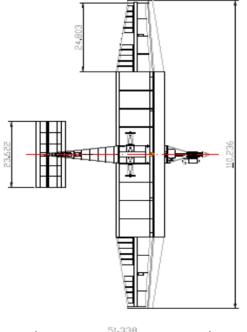

System Diagram

Engineering Economics

- Budget: \$3,000
- Total expenditures ~\$2,014

Expenditure Breakdown

Tests


Successful Tests

- Servo calibration
- Motor break-in
- Motor full-throttle
- Static wing loading
- C.G. verification
- Mechanical trim adjustments

- Future Tests
 - Test flight scheduled for 04/14/2012
 - Pilot availability
 - Timed cargo loading/unloading
 - Under 1 minute each

Verification of Competition Guidelines

- Actual Plane Measurements
 - Length: 51" (129.5 cm)
 - Height: 23" (58.4 cm)
 - Width: 110.25" (280 cm)
 - Overall: 184.25" (468 cm)
 - Within competition requirements
- Empty Weight: (~6.8 lbs)
 Theoretical Max Payload: (55–6.8)

Conclusion

- Design process yielded:
 - Standard design aircraft
 - Custom designed wing profile
 - Conventional tail & tail boom
 - Tricycle landing gear design
- Within our design constraints
- Confident our design will finish in top 10 at Marietta, GA
- Experienced & overcame difficulties involved with international collaboration projects

Questions

