

SAE Aero Design

Group 10

Dimitrios Arnaoutis Alessandro Cuomo Gustavo Krupa Jordan Taligoski David Williams

Competition Assessment

Final Flight Score = i x (Best Flight Score)

 $i = 1 + (Ao - 40\%) \times .25$

Target Ao for Regular Class 2012 will be 40%

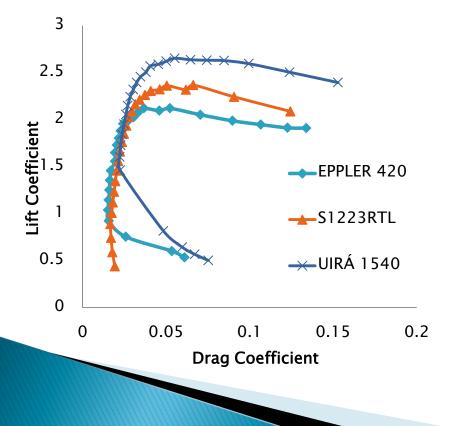
 $A_o = \frac{[Successful Flight Round]}{[Successful Flight Round] + [Missed Flight Round]}$

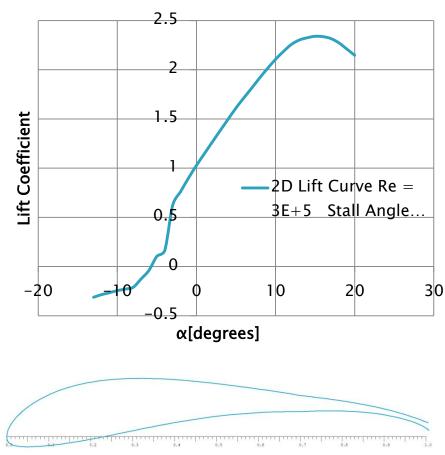
FS = RAW + PPB + EWB - TP

RAW	= Raw Weight Score
PPB	= Prediction Point Bonus
EWB	= Empty Weight Bonus
TP	= Total Penalty Points

 $RAW = W \times 4$

W = Weight Lifted in Pounds

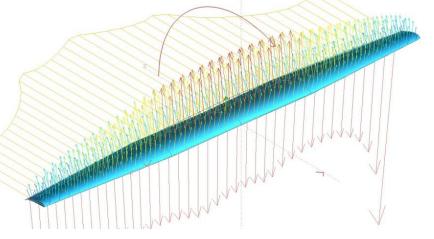

$$PPB = 20 - \left(P_{\text{Pr} edicted} - P_{Actual}\right)^2$$

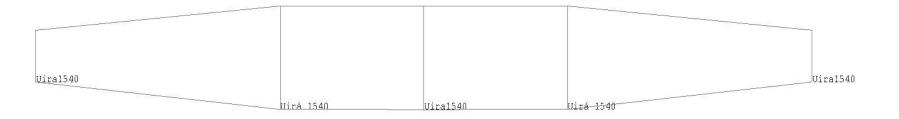

 $P_{Predicted}$ = Predicted Payload P_{Actual} = Actual Payload

Wing Profile

• Knowing the MTOW, we find $C_{L_{Design}} = 1.94$

• According to the literature(Abbot), the vortex effects decrease 20% of the aircraft`s lift coefficient.

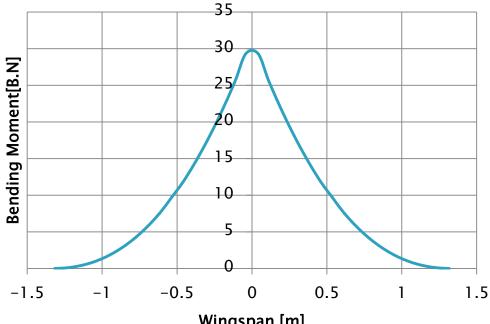

Airfoil data calculate for Cl_max


Lift Coefficient = 2.34Drag Coefficient = 0.048L/D = 48.8Moment Coefficient = -0.202

Wing Design

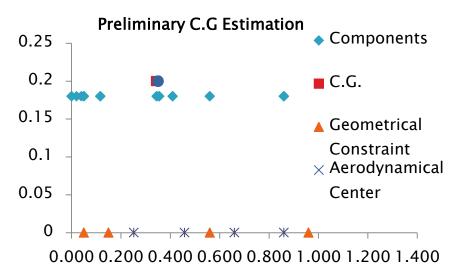
- •The software utilized was the Cea-VLM (vortex lattice method)
- Several iterations were made varying:
 - Wingspan
 - Wing root and chord
 - Taper ratio and its position
- considering it's consequences to:
 - Wing weight (estimated via the Cubic Law)
 - Wing lift and drag
- this process was monitored by the:
 - Oswald 's factor

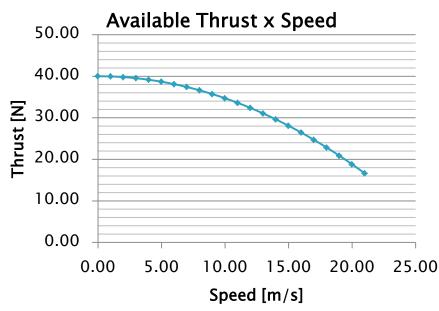
- Wing span = 2.7 m
- Root Chord = 0.32m
- Tip Chord = 0.16 m
- M.A.C = 0.28 m
- Tip Twist = 2 degrees
- Wing Area = 0.728 m^2
- Aspect Ratio = 10



Wing Loads

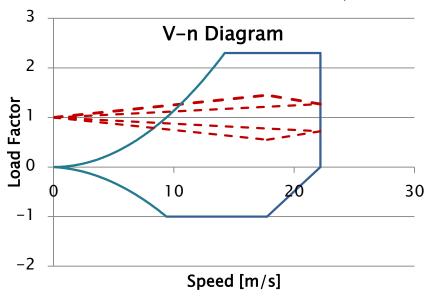
•The wing loads were estimated utilizing the methodology proposed by Schrenk


•In a later analysis this data will be used to size the wing spar by using finite element methods



Wingspan [m]

Performance Calculations



• The components will be positioned according to the overall effect that they have on C.G.

• The V-n Diagram gives an overview of the flight envelope by relating its velocities to the load factor that the aircraft will undergo under that speed.

Performance Parameters

•	Climb Angle	5.1670	degrees
•	Rate of Climb	0.1920	m/s
•	Vstall	10.6832	m/s

Takeoff Gross Weight

$$W_o = W_{payload} + W_{fuel} + W_{empty}$$

- *W_{payload}* can assume a value of about 35.3 lbs which was the max payload of last year's 1st place aircraft
- *W_{fuel}* can be determined using the following givens and relations:
 - Given:

0

• $ho_{fuel} = 1.1371 \text{ g/cm}^3$; $V_{tank} \approx 350 \text{ cm}^3$; g = 9.81 m/s²

$$\gg W_{fuel} = \rho_{fuel} \times V_{tank} \times g \approx 3.904 \text{ N} \approx 0.8777 \text{ lbs}$$

 $^{\circ}$ W_{empty} can be estimated using a minimum ratio of 0.2 (W_e/W_o)

•
$$W_o = \frac{W_{payload}}{1 - \frac{W_{fuel}}{W_o} - \frac{W_e}{W_o}} = \frac{35.3}{0.8 - \frac{0.8777}{W_o}} \cong 45.22 \text{ lbs}$$

> $W_e = W_o - W_{payload} - W_{fuel} = 9.0423 \text{ lbs}$
 $W_o \le 55 \text{ lbs}$

Fuselage – Sizing

- Using the W_o as 45.22 lbs, we can now size the fuselage (theoretically) using the following equation,
 - Length = aW_o^C

where "a" and "C" are constants based on a powered sailplane and respectively assume values of 0.71 and 0.48

> Length = 4.424 ft

Average diameter can be calculated using a fineness ratio (FR) of 8 and the length of the fuselage

$$FR = \frac{L}{D_{avg}} D_{avg} = \frac{4.424}{8} = 6.396$$
 in (circular)

- If the cross section is noncircular, the height and width can be attained using the relation,
 - $D_{avg} = \frac{H+W}{2}$ If we set H = 2W for clearance purposes
 - > W = 4.264 in H = 8.528 in (rectangular)

Fuselage – Drag Calculations

- Wetted Area Estimation (blunt body)
 - $A_w = Perimeter \times Length$
 - Circular Cross Section: $A_w = \pi(0.553 ft) \times 4.424 ft$

 $>A_w \approx 7.686 \, \mathrm{ft}^2$

- Rectangular Cross Section: $A_w = 2(4.264 + 8.528)ft \times 4.424 ft$ $> A_w \approx 113.18 \text{ ft}^2$
- Drag Estimation

 $F_d = qA_wC_f$

Assume: $q = 1.0665 \text{ lb/ft}^2$ Re = 300,000 (laminar)

Circular Cross Section

 $\succ F_d = \left(1.0665 \frac{lb}{ft^2}\right) (7.686 ft^2) \left(\frac{1.328}{\sqrt{300,000}}\right) = 0.0199 \ lbs$

Rectangular Cross Section

 $\succ F_d = \left(1.0665 \frac{lb}{ft^2}\right) (113.18ft^2) \left(\frac{1.328}{\sqrt{300,000}}\right) = 0.293 \ lbs$

Payloads

With an approximated payload W_{payload} = 35 lbm ≈ 16 kg we can approximate the volume of the payload based on densities of various common metals and their corresponding cost, and decide on a material for the payload.

Material	Density (gm/cm ³)	Cost (USD/kg)	Volume (in ³)	Cost (USD)
Steel Alloy	7.85	0.5	123.414	7.94
Stainless Alloy	8	2.15	121.1	34.13
Gray Cast Iron	7.3	1.2	132.712	19.05
Copper Alloy	8.5	3.2	113.976	50.8

From this analysis our payload will likely be Steel

*Data selected from Callister 7th edition

Payload Structure

Initial Concept:

- Threaded shaft running horizontally down fuselage
- Allows for:
 - Weights to be spun and still with help of wing-nuts
 - Adjusting of Center of Gravity

Potential front wheel locations (must be steerable)

Landing gear support made of a resilient composite material, Kevlar matrix and epoxy.

Engine Mount

- Engine will be a Magnum xls 61
- No "standard" mount on the market
- Adjustable mount is suggested
- Inexpensive~\$4-\$6
- Very effective

http://www.hooked-on-rc-airplanes.com/model-airplane-engine.html

There exist many variations
Essentially the same
Attaches directly to the fuselage
Decision will be made upon final shape of fuselage

http://www.activepowersports.com/greatplanes-adjustable-engine-mount-60120gpmg1091/

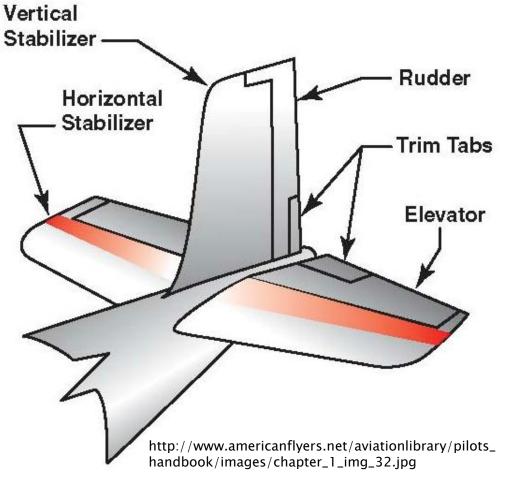
Tail Booms

Conventional:

- Commonly used in commercial passenger aircraft as cargo area
- Design
 - Flush with fuselage
- Strength:
 - Good torsion resistance
- Weight:
 - Heavier weight in comparison to other options of tail booms.

Pipe:

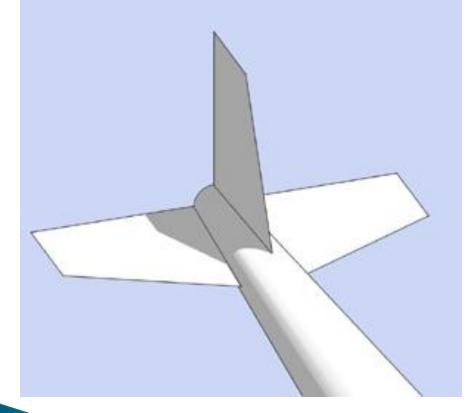
- Used in model aircraft and small helicopters
- Design:
 - Best done with carbon fiber (not permitted)
- Strength:
 - Low torsion resistance
- Weight:
 - Lightest weight design



Twin Boom:

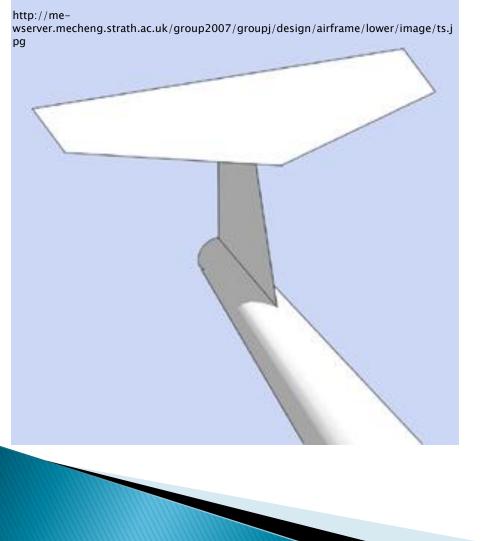
- Design:
 - Greatly affects fuselage design
 - Strength:
 - Great torsion resistance
 - High stability
- Weight:
 - Highest weight compared to other booms

Tail Design



- Tail design deals mostly with stability, control, and trim
- Sized small to reduce wetted area and weight
- Symmetric non-lift inducing airfoil
- Design affected by:
 - Boom length
 - CG location
 - Aircraft stall velocity

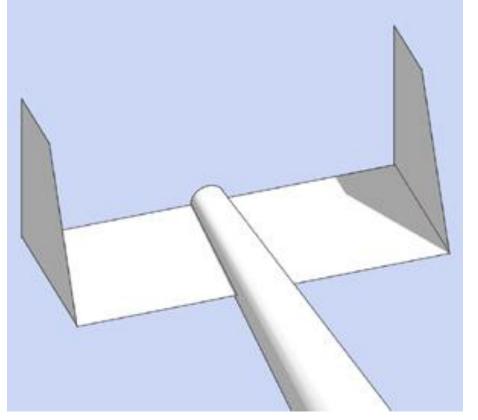
Tail Design – Conventional


http://me-

wserver.mecheng.strath.ac.uk/group2007/groupj/design/airframe/lower/image/conventionals.jpg

- Roots of both stabilizer attached to fuselage
- Effectiveness of vertical tail is large
- Vertical tail height removes possible length from wing

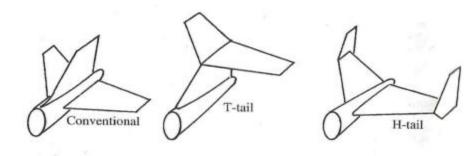
Tail Design – T-tail



- Reduced aerodynamic interference
- Vertical tail very effective due to fuselage and horizontal tail endplates
- Horizontal tail can be lengthened for short boom designs

Tail Design – H-tail

http://me-


wserver.mecheng.strath.ac.uk/group2007/groupj/design/airframe/lower/image/us.jpg

Uses the vertical surfaces as endplates for the horizontal tail

- Vertical surfaces can be made less tall, adding to allowable wing length
- Reduced yawing moment associated with propeller aircraft
- More complex control linkages required

Tail Design - Decision Matrix

Figure of Merit	Weighting factor	Conventional	T-tail	H-tail
Drag	0.20	3	2	1
Ease of Build	0.10	5	3	2
Maneuverability	0.15	3	4	5
Stability	0.35	4	4	5
Weight	0.20	4	4	3
Total	1.00	3.75	3.5	3.5

Cost Analysis

ltem	Description	Quantity	Cost
Engine	Magnum xls 61	1	\$240
Balsa Wood	Structure of aircraft, various lengths and shapes	~50 ft.	\$100
Monokote	Skin around structure	~50 sq. ft.	\$60
Servos	Controls flaps (elevator, aileron, rudder, etc.)	5	\$125
Fuel Tank	Holds fuel within fuselage	1	\$5
Battery	Powers servos and receiver	1	\$15
Radio and receiver	Radio controller for the plane and the receiver to send control functions to servos	1	\$O
Miscellaneous Items	Wheels, pushrods, hardware, engine mounts, propeller	TBD	\$75-\$150
Total		*estimate	*\$620-\$695 ₁₉

Future Plans

- Newly Acquired Sponsor:
 - highflyhobbies.com

- Further, in-depth analysis
- Control selection
 - Servo sizing
- Decide on a final layout before the end of the semester

References

- SAE Aero Design Rule Book
 - <u>http://students.sae.org/competitions/aerodesign/rules/</u> <u>rules.pdf</u>
- Aircraft Design: Synthesis and Analysis
 - http://adg.stanford.edu/aa241/AircraftDesign.html
- O.Schrenk, A Simple Approximation Method for Obtainign the Spanwise Lift Distribution, TM 948, 1940.
- NACA TN-1269, "Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data".
- http://media.hobbypeople.net/manual/210802.p df

Questions

Perguntas???