

Design and Development of a Gas Coupling Unit for Trigeneration and Algae Photobioreactor Systems

Team Members:

Richard Carter Felipe Merss Robert Rantz Angela Silva Wayne Weatherford

Scope Revisited

- Use CO₂ for photosynthesis in Photobioreactor.
- Sequester CO₂ from the exhaust stream.
- Couple exhaust with Photobioreactor via a scalable system.
- Perform Life Cycle Analysis on American system.

- Consume the CO₂ produced during the combustion;
- Use the exhausts gases to increase the algae growth;
- May produce Biodiesel by the algae fat;
- Sustainability;

What is the idea?

International Team 11

System Coupling

System Coupling

International Team 11

The first downstream part of the coupling device is shown

- 1. Condensate/excess gas outlet
- 2. Particulate filter
- 3. Hose barb leads to air pump

Life Cycle Analysis

- LCA will be carried out on:
 - FSU's Photobioreactor array.
 - FSU's Trigeneration system.
 - Coupling System.
- LCA performed last semester on UFPR's large photobioreactor yielded:
 - Environmental impacts due to materials used in production.
 - Viability of structure design.
 - Land use necessary to meet standard biodiesel production.

What has been completed since the last presentation

- Refrigerator has been attached to the trigenerator using new installed piping.
- pH sensors were checked. Three pH sensors were not used properly during the last senior design project, therefore all pH sensors must be replaced.
- Exhaust gas temperature was checked (Infrared Temperature Sensor and Thermocouples). Steady state: 39-40°C.
- Air pumps and diffusers received.
- Coupling system parts were purchased and cut to size; the coupling system framework was assembled.

What has been completed since the last presentation

- All components have been ordered.
- Yet to receive some components:
 - Water pump
 - pH sensors
 - Solenoids
- New algae supplier selected due to ordering problems
 - New Supplier- Carolina Biological Supply Company
- Back-up Algae cultures have been inoculated
 - Chlorella vulgaris and Scenedesmus
- Website updated
 - New content, photos, minor fixes

International Team 11

Potential Problems, Solutions

Unwanted/harmful chemicals in exhaust stream Nitrous oxides (NO_x)

Algae will consume, not threatening to parts

Unburnt hydrocarbons (C_xH_y)

Harmful to air pump and algae
Some will condense in H/X and be expelled upstream

Sulfur dioxide (SO₂)

 Can form sulfuric acid in water with catalyst NO₂, potentially lethal to algae

Water vapor (H₂O)

 Harmful to air pump, most will condense and be expelled upstream

Catalytic converter will not be effective on our system

International Team 11

Possible solution: filter the exhaust stream through plain water upstream of photobioreactor

Hydrocarbons and water will condense and drain at this outlet

GANTT Project	Sep -	11	October 2011			r	November 2011					December 2011					January 2012				February 2012				March 2012				April 2012			1
15	20	20	40	41	12 12		15	46	47	10	10	50	E1	50	1	2		4	E	e	7			10	11	1	2 1	12	14 1	E 1	G 17	/ 10
L CA LIERR Riereester		13	40	141	42 4J	44	40	40	47	40	45	100	pi	pz	1	2	J	14	р	р	. P	μ	9	IIO	- 111	· p	2 [I	13	14 1	o p	0 117	Pu
LCA- OFPR Bioleactor	1 - 2																									- 1	-			- 1	- 11	-
Pulchase Soliwale		- 1																								-	-			- 1	- 1	
Applyoin of Water and Medium			- 1																							- 1	-			- 1	- 11	-
Evoluate Rumpe		-		- *		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Purification Systems					- ¥	L.													÷							-	-	-	-			
Pow Materiale		-	-			*		Ъ.							-											-	-		-	-	-	
Energy Consumption								*		6																-	-			- 1	- 11	
Analysis		-	-					_	-	*	h		-		-			-	÷		-	-	-			-	-		-	-	-	
Final Presentation											*															-	-					
I CA - Gas Coupler					_										-																- 1	
Software Review/Eval															Ť.		-		T													
Analysis of Gases																	- *-		Б								_			-		_
Evaluate Pumps																			*	-	b -1						_					
Filtration																					t	-	-									
Raw Materials																							t		5							
Energy Consumption																			1						Ľ			1				
Analysis																												1		1		_
Final Presentation																													[_		
Needs Assessment and Project Scope																																_
Product Specification and Project Schedule			Ľ	h																												
Background Research						-																										
Existing Technologies																																
Heat exchange																																
Flow Control																																
pH Monitoring and Control																																
Algae Horticulture																																
Restore Existing Systems							۹.																									
Repair Trigeneration System																																
Construct Bioreactor Array																																
Design and Development					_						-																	_				
Concept Generation				Ĺ	ų.																											
Initial Development and Design							1																					_				
Interim Design Review																																
Final Design Review									_		-																					
Order Materials		_									Ĺ															_	_	_		_	_	_
Christmas Break					_										_				_									_	_			-
Prototype Review and Component Sourcing	_																		h									_				
Prototype Phase			_		_														Ŧ								_	_	_			_
Build		_	_	_			_	_	_		_	_	_	_	_	_	_	_	-			L.	_			_	_	_	_	_	_	_
Test		_	_	_			_	_	_		_	_	_	_	_	_	_	_		_			┢	_		_	_	_	_	_	_	_
Evaluate		-			_																		_	╧╪	-	-	-	-	_	-		-
Final Phase		-	_									-	-	-	-			-						Ŧ			-	-	-	-		-
Final Build		_	_	-			-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			4	_		_	-	_	-
Final Testing			_				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- <u>}_</u>			-	_	-
Final Evaluation		-				-	-	-	-	-	-					-	-		-	-	-	-	-	-	-	-						-
Final Report			-				-	-		-		-	-	-		-	-	-		-		-		-			-		_	<u> </u>		-
Final Presentation		-	_			-	-		-		-	-	-	-	-	-	-	-	-	-		-		-		-	-					-

Item	Quantity	Price	Total
Hiblow USA GP 40 Linear Air Pump 40 Ipm @ 1.7 psi, 4 psi max.	2	\$101.38	\$202.76
Shurflo Water Pump	1	\$70.00	\$70.00
Aquamedic Photobioreactors	2	\$80.00	\$160.00
Neptune Systems Order (PM1, pH probes x4, temp probe)	-	\$284.67 +\$40.00sh	\$324.67
UTEX Algae agar culture	2	\$30.00+ \$10.00sh	\$80.00
Carolina Biological Supply Co. Algae Cultures	2	\$7 + \$10 +\$17 +\$16	\$50.00
Biodiesel Supply Store & Chemicals Stainless Steel ¼" Solenoid, AC	2	\$50.33	\$100.66
Polyester Air Filter Media Pads Package of 6 - 2'' thick pads	1	\$10.85	\$10.85
PVC Pipe, barbs & fittings	-	\$40.00	\$40.00
Inline Diffusers	4	\$32.99	\$131.96
		TOTAL:	\$1,170.90

Next Tasks

- Inoculate new algae cultures
- Analyze exhaust stream, measure %CO₂
- Calibrate pH sensors upon arrival
- Set up controllers
- Finish assembly of coupling system
- Mount other Photobioreactor and prepare for inoculation

QUESTIONS ???

