

Design and **Development of a Gas Coupling Unit** for Trigeneration and Algae **Photobioreactor** Systems

April 5th , 2012

International Team

Angela Silva ¹ Felipe Merss ² Richard Carter ¹ Robert Rantz ¹ Wayne Weatherford ¹

> Advisor: Dr. J. Ordonez¹ Dr. J. Vargas²

 ¹ Mechanical Eng. Dept. FAMU-FSU COE
 ² Mechanical Eng. Dept. UFPR

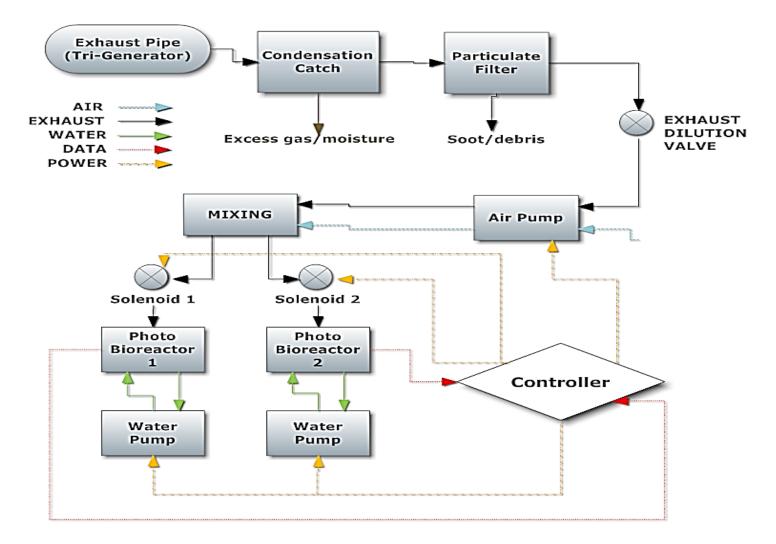
Outline

o Project Description & Diagram

o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion
o Conclusion

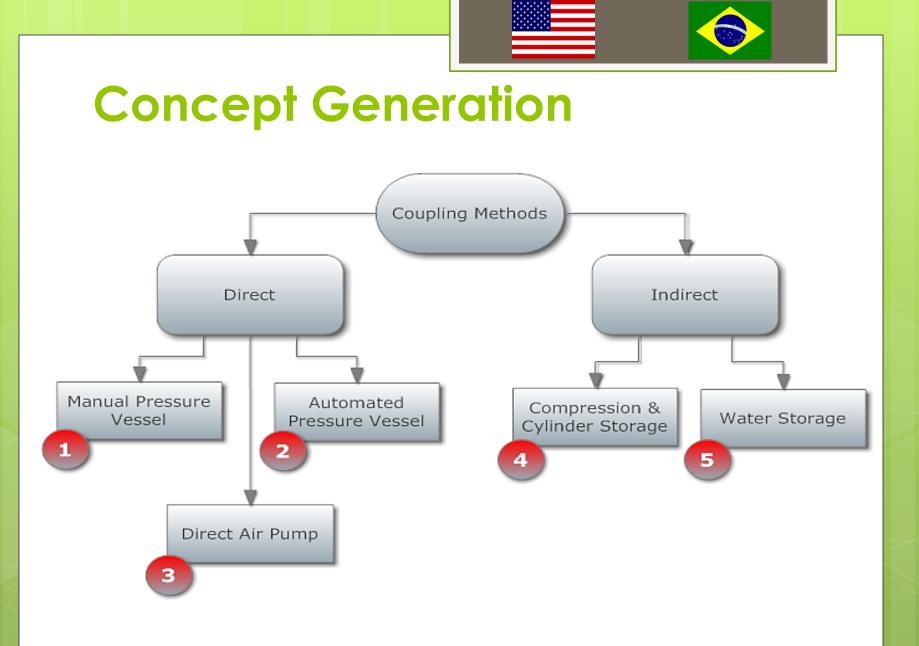
Project Description

Fuel Source vs. Land Use

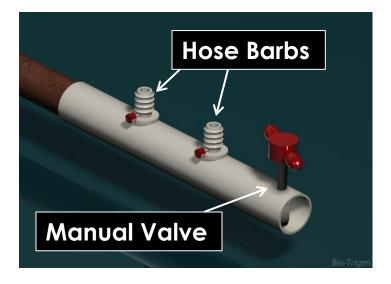

Source	Oil Production (L ha ⁻¹)	Required Cultivation Area (M ha)*
Corn	172	1,540
Soy	446	594
Canola	1,190	223
Jatropha	1,892	140
Coconut	2,689	99
Palm	5,950	45
Microalgae ^a	70,405	7.6
Microalgae ^b	35,202	15.2

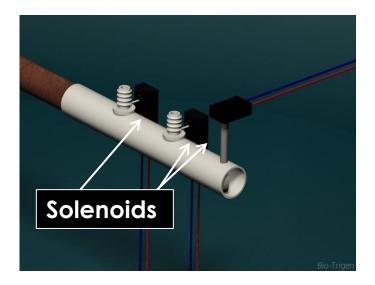
* To meet 50% of transport fuel needs in the United States of America.

^a 40% oil in dry biomass;


^b 20 % of oil in dry biomass. (Christi, 2007)

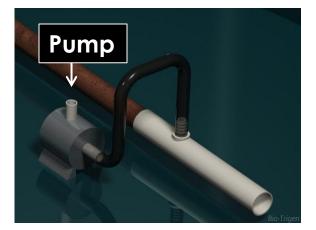
Functional Diagram



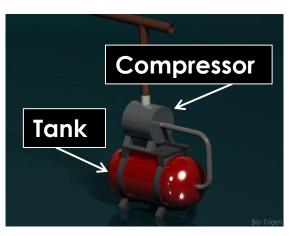

Outline

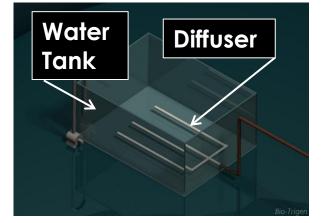
o Project Description & Diagram
o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion
o Conclusion

Concept Generation



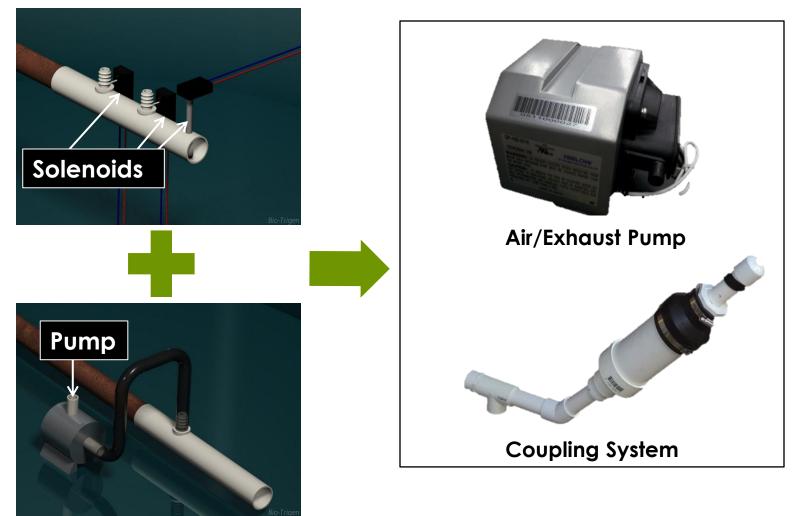
Concept 1- DIRECT Manual Pressure Vessel


Concept 2- DIRECT Automated Pressure Vessel

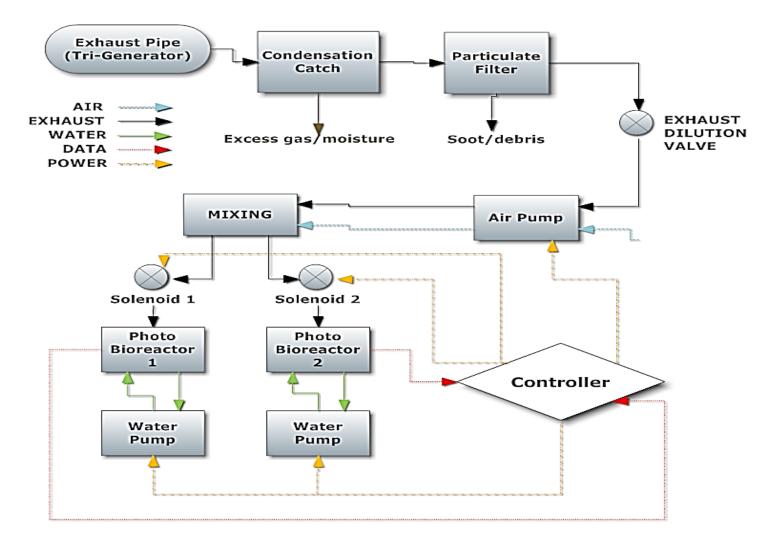

Concept Generation

Concept 4-INDIRECT Pump to Pressure Vessel

Concept 3-DIRECT Air Pump


Concept 5-INDIRECT Water Storage

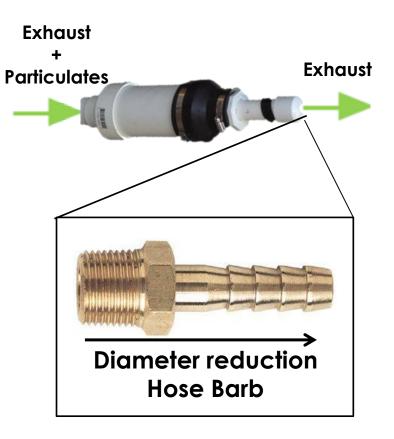
Concept Selection Matrix


Criteria	Weight	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5
Capture Effectiveness	0.25	7	8	8	5	4
Power Requirements	0.2	9	9	7	4	5
Cost Effectiveness	0.2	7	8	8	5	6
Scalability	0.1	6	6	9	8	8
Controllability	0.1	7	9	9	8	7
Reliability	0.05	8	7	7	6	6
Durability	0.05	7	6	8	6	7
Adaptability	0.05	5	6	7	9	9
Total Weighted Score	1	7.25	7.85	7.9	5.7	5.8

Outline

Project Description & Diagram
Concept Generation & Selection
Current Concept Description
Engineering Economics
Life Cycle Analysis
Results and Discussion
Conclusion

Functional Diagram


System Components- Exhaust Fitting

- A 1 in. ID CPVC fitting
- Press fit onto exhaust pipe
- Opening at bottom allows:
 - Excess exhaust escape
 - Condensate drain

System Components- Filter

- Round disks
- Household smoke and particulates filter
- Placed inside CPVC piping
- Ends sealed with CPVC caps
- Ends sealed with PVC cement
- Caps are tapped for hose barb

System Components- Exhaust Dilution Valve

- Simple tubing
- Flow control ball valve

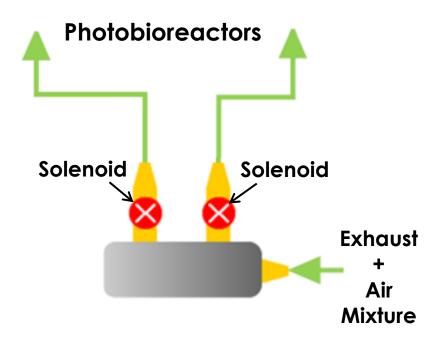
Open/Close Valve

- Controls exhaust and air mixture
- Doubles as air inlet if engine is not running

Exhaust Dilution Valve

System Components- Pumps

- Water pumps provide periodic circulation
- Air pumps:
 - 2 discrete inputs
 - 2 outputs for exhaust mixing


Water Pump

Air/Exhaust Pump

System Components- Distribution Manifold

- Distributes exhaust to photobioreactors
- Solenoid valves:
 - controlled
 - supply gases to photobioreactors

Distribution Manifold

System Components- Photobioreactors

- Two species :
 - Scenedesmus quadricauda
 - Chlorella vulgaris
- Two exhaust:
 - 1 Scenedesmus
 - 1 Chlorella
- Two air:
 - 1 Scenedesmus
 - 1 Chlorella
 - serve as control

Photobioreactors

System Components- Sensors

- 4 pH sensors:
 - monitor CO2 effect on algae pH
- 3 temperature sensors:
 - monitor temperature in photobioreactors

Whitephone Systems

pH Sensor

Temperature Sensor

System Components- Controllers

(a) Microcontroller controls:

- solenoids
- water pumps
- Air pumps
- (b) Controlled electrical outlets:
 - Specific outlet control

(c) Probe module:

provides ports for pH and temperature sensors

(d) GUI

Provides ease of use

System Components- Housing Unit

- Above the unit:
 - Photobioreactors are fastened
- Drawer of unit:
 - Surplus storage space
- Top shelf of unit:
 - Electronics are stored
- Bottom shelf of unit:
 - Pumps are mounted

Housing Unit

Outline

o Project Description & Diagram
o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion

Engineering Economics

• Budget of \$2,500

Item	Price		
Algae and Medium	\$320		
Electronics and Sensors	\$700		
Pumps and accessories	\$450		
Housing Unit	\$590		
Miscellaneous	\$60		
Total	\$2,120		

• Available funds: \$380

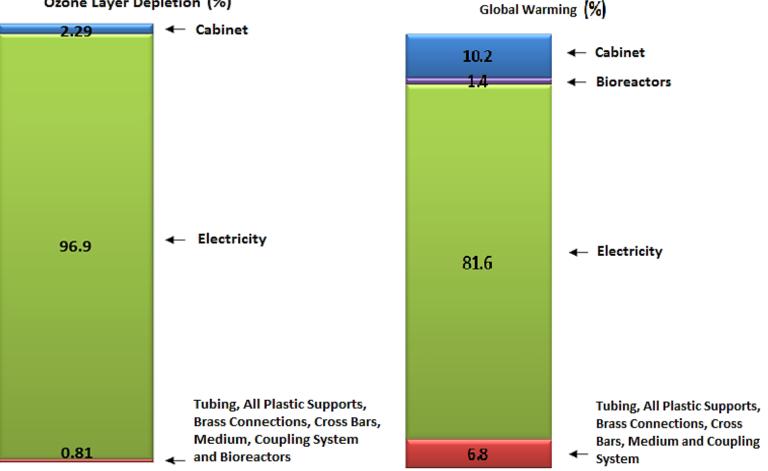
Outline

o Project Description & Diagram
o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion
o Conclusion

Life Cycle Analysis

- A "cradle-to-grave" methodology
- Evaluates environmental impacts:
 - Materials used
 - Over a period of interest
- Can make a process/product greener
- Computer Applications to perform analysis (SimaPro)

Life Cycle Analysis

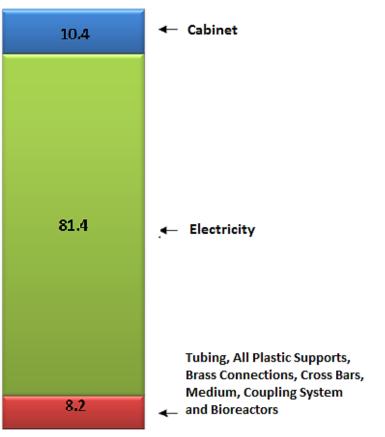

SimaPro Major Input Data

Element	Weight (g)	Electricity (kWh/year)
Cabinet	26489	
Tubing	1800	
Bioreactors	1872	
Coupling System (PVC)	881	
Cross bars	332	
Plastic Panels	576	
Brass Connections	192	
Distillate Water	521400	
Water Pumps		473.04
Air Pumps		846.96
CHU Medium	1042.8	

26

CML 2 Baseline 2000 - World 1995 Ozone Layer Depletion (%)




CML 2 Baseline 2000 - World 1995

27

Life Cycle Analysis

 Ecological Footprint method:
 examines CO2 emitted to the atmosphere

Life Cycle Analysis

• Biodiesel Production: 24 kg/yr (27.27 L/yr) CO2 Sequestered: 187.7 kg/yr

• Assumptions:

- o Batch System (10 L/wk)
- o 20% dried biomass
- 20% oil extraction percentage (Chlorella)
- 30% oil extraction percentage (Scenedesmus)
- 95% efficiency in converting oil to biodiesel
- Biodiesel density of ~0.88 kg/L
- o 1 kg of dry biomass can sequester 1.8 kg of CO2

(Global CCS Institute, 2012)

Outline

o Project Description & Diagram
o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion
o Conclusion

Results and Discussion

• Tests conducted:

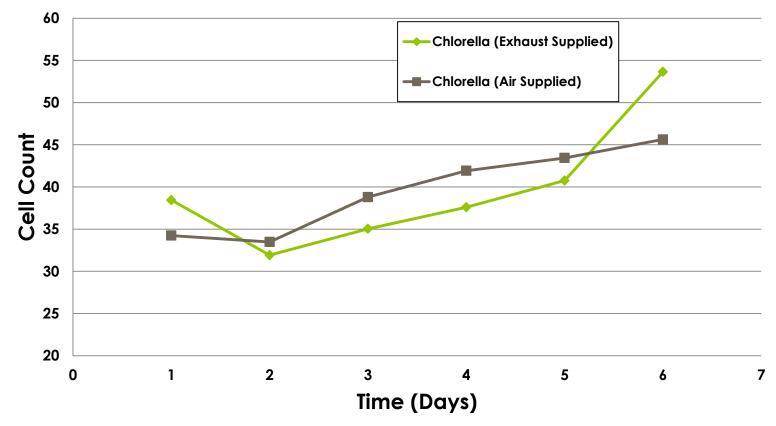
• Trigeneration exhaust temperature test

Infrared temperature sensor

o Thermocouple

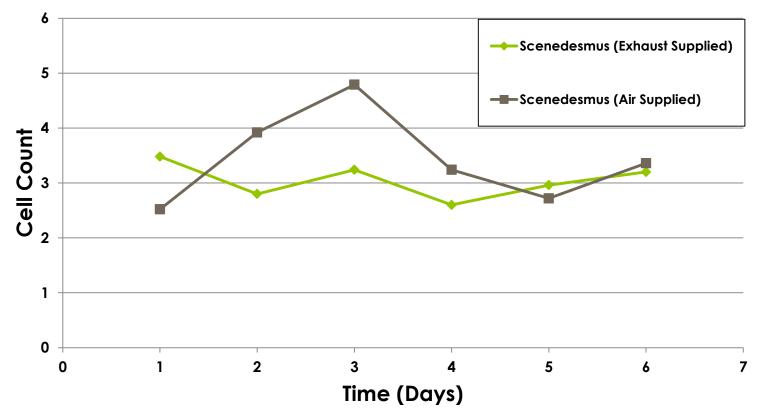
o Gas Analysis of Exhaust

- Exhaust effect on algae growth • cell count
 - o pH sensor data

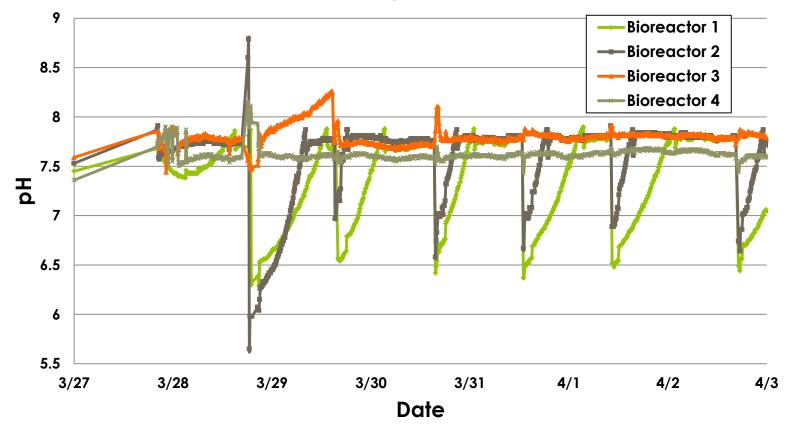


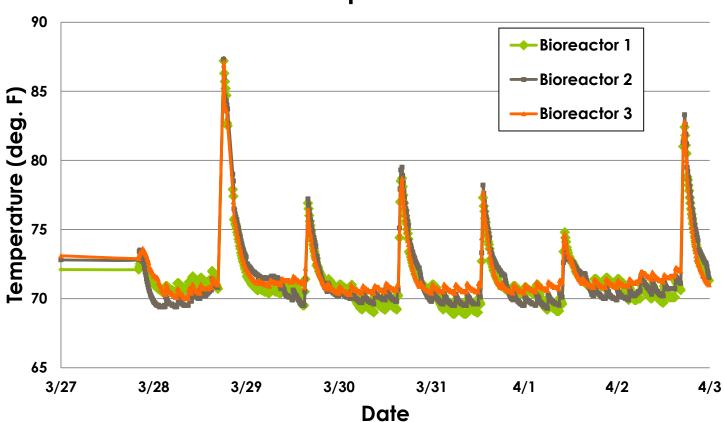
Results and Discussion

Algae Cell Count Data-Chlorella


Chlorella Cell Count vs. Time

Algae Cell Count Data- Scenedesmus


Scenedesmus Cell Count vs. Time


pH Sensor Data

Bioreactor pH vs. Time

Temperature Sensor Data

Bioreactor Temperature vs. Time

Results and Discussion

Objectives Revisited

- Create a coupling device
- Deliver CO2 to
 Photobioreactors
- Examine growth of algae
- Complete Life
 Cycle Analysis

Outline

o Project Description & Diagram
o Concept Generation & Selection
o Current Concept Description
o Engineering Economics
o Life Cycle Analysis
o Results and Discussion
o Conclusion

Conclusion

Coupling system supplied exhaust

Algae can grow while fed exhaust
 Growth was not hindered

o Improvements:

Larger Photobioreactors

- o Increase biomass
- Limit temperature swings
- More CO2 absorption
- Creation of outdoor system
 - Continuous testing
 - Limit temperature swings

