Drag Racing

JOSEPH COGNATO¹, JONATHAN GLYNN¹, MATTHEW HARTMAN¹, LEONARDO OLIVEIRA²

¹. Department of Mechanical Engineering, Florida State University, Tallahassee, FL ². Department of Mechanical Engineering, Universidade Federal de Itajubá, Itajubá, MG

4/12/2012

Overview

- Introduction
- Scope
- Concepts
- Final Concept and Design
- Budget
- Results
- Conclusion

Introduction

- Design a Museum display that will demonstrate properties of aerodynamics to young minds (K-12)
- User friendly educational display

Objectives

- Low maintenance
- Interactive
- Robust and simple for repeated demonstrations
- Easy to operate

Initial Concepts

• Decision between housings of a traditional display or alternative flow tank (water)

• Possible visualizations using water, or air

- Display the wake off of the shapes using a piezoelectric sensor
- Allowing the users hand to act as an airfoil

Initial Concepts Cont'd

- Large airfoil with adjustable pitch to find the critical lift angle
- Different shapes placed on the carts to minimize drag

Selection Matrix

8

		-	-	-	_	-		
	Cost	Maintenance	Space	Robust	Educational	Simple	Safety	Total
Weight	0.1	0.25	0.1	0.1	0.25	0.15	0.05	10
Air Box	10	9	10	10	7	10	8	8.9
Water	1	7	2	0	10	0	L	6.9
Tank	T	/	2	ð	10	ð	5	0.0
Smoke	3	1	4	9	10	9	7	6.1
Cart	8	8	8	7	7	9	9	7.9
Hand	10	10	8	10	6	10	2	8.4
Airfoil	6	9	6	8	9	7	8	8
Actuator	8	9	7	8	5	5	8	7
Drag	C	10	10	0	0	7	Δ	0.25
Racing	6	10	10	9	ð	/	4	8.25

10=good 1=bad

Final Design Selection

- Drag Racing was selected due to the low maintenance and easy to convey ideas
- The interactivity can keep the user engaged and get them to learn more
- The multiple shape options allows for continued use

System Overview

- One shape per cart
- Held in the starting mechanism
- Fans are activated by the user
- Carts are released

System Overview

- Cart that reaches the end
- Attaches to stopping mechanism
- Sets off LED
- Reset manually

- User will be able to visually see difference in shapes
- The coefficients of drag range from 0.04-2.3
- The main stopping force is the drag

Shapes Cont'd

• Coefficient of drag determines stopping order

- Shapes were machined using CNC at the FAMU-FSU College of Engineering
- The shapes are used to demonstrate the need for more streamlined bodies instead of blunt bodies

Results: Shapes

- Theoretical vs. the actual stopping distance
- Turbulent flow
- Friction
- Finished in expected order

• Electrical System

Starting Mechanism

- Reliable and simultaneous start
- Independent loading of each cart

Stopping Mechanism

- Light weight, simple, and reliable
- Impact force is a factor
- Cushion need to soften impact

Fan

- High mass flow fan required
- Measured using a pitot static probe
- Provides a wind speed varying from 7-16 m/s
- The fan was chosen due to the relatively controlled airflow

Results: Electrical System

25 '

Sensors

- Connected to Dragon Board
- Light signal = 0V; no signal = 5V
- Relays
 - Tested with 12V supply
- LED
 - Connected to Dragon Board

Engineering Economics

26

Item	Quality	Cost per unit(\$)	
Aluminum bars	5	39.31-88.24	
Paint	1	21.97	
Paint Supplies	1	9.97	
Gorilla Glue	2	10.97	
Wall Outlet	1	2.99	
Light Switch	1	8.97	
Washers	24	0.11	
Screws	2	0.98	
Plexiglass	1	50.00	
Aluminum rod	1	50.00	
Steel Bar	1	50.00	
Springs	3	50.00	
Electric system	1	76.00	

Total Cost \$559.04

Shapes:345.74\$ Electrical system:76.00 Housing:103.34\$

Conclusion

- Display shows drag differences among shapes
- Display is robust and low maintenance
- Display shows the property intuitively
- Display results are obvious
- Electronic systems implemented to aid in information communication
- Not successful in attaching relays to fans
- Electronics not as secure as desired
- System is not as stable as desired

Future Plans

- Addition of more shapes
- Streamline flow
- More visuals
- Other demonstrations
- Added functionality
- Simplify construction to mass produce

Acknowledgements

- Dr. Shih
- Dr. Oats
- Dr. Kosaraju
- Dr. Dalban-Casnassy

