Drag Racing

GROUP 13 JOSEPH COGNATO JONATHAN GLYNN MATTHEW HARTMAN LEONARDO OLIVEIRA

• Demonstrate properties of aerodynamics to young minds (K-12)

Scope

- Low maintenance
- Interactive
- Robust and simple as to facilitate many repeated demonstrations

Current Status

- Ordered aluminum from McMaster-Carr
- Waiting on materials for shapes
- Program for displays ready
- Electronics determined and chosen
- Finalizing materials for starting and stopping Mech.

Launching Mechanism

- Order springs at Planet Spring
- Two different types of springs

Launching Mechanism

11

• Cart Springs Parameters:

- Maximum Load: 12.5N
- Spring Constant: 0.144 N/mm
- > Price: \$20,00

Answers

Loads & Rates

True Maximum Load, *Frue F_{mat}* : **19.830 N** Maximum Load Considering Solid Height, *Solid Height F_{mat}* **12.564N**

Spring constant (or Spring rate), k 0.144N/mm

Safe Travel

True Maximum Travel, *Fue Fravel_{mat}*: 137.319 mm Maximum Travel Considering Solid Height, Solid Height Fravel_{mat}: 87.000 mm

Physical Dimensions

Diameter of spring wire, *d*. **1.000 mm** Outer diameter of spring, D_{outer} : **20.000 mm** Inner diameter of spring, D_{inner} : **18.000 mm** Mean diameter of spring, D_{mean} : **19.000 mm** Free length of spring, I_{free} : **100.000 mm** Number of active coils, n_a : **10**

Number of total coils, *n_T*: **12**

Solid height, *L_{solid}*: **13.000 mm** Type of ends: **closed & squared**

Spring index, *C* : **19.000** Distance between coils, *Coll_{pitch}*: **9.700 mm**

Rise angle of coils: 9.23

Material Type

Material type: Music Wire ASTM A228

Weights & Measures

Weight of one spring, *M*: 0.004425 Kg Weight per one thousand springs, *M*: 4.424593 Kg Length of wire required to make one spring, Lwire: **716.283 mm**

Stress Factors

Material shear modulus, *G* : **79,241,245,136.187Pa** Maximum shear stress possible, t_{max} : **1,030,490,425.037**

Wahl correction factor, W: 1.074

Suggested Part Number

Suggested Part Number : MW-100.000

Stopping Mechanism

- Magnet attached to the cart
- Metal surface at the finish
- Elastic material to absorb kinetic energy

Electrical System

- Arduino Board controlling the system
- LCD showing data
- Photo receiver used for velocity calculation
- Relay to control power of the fans
- IR Transmitter
- Wires for fans
- Wires for circuits

Electrical System

(16)

Quantity	Product	Price	Store
1	Arduino Mega	\$58,95	Sparkfun Electronics
1	LCD	\$15,95	Sparkfun Electronics
4	IR emitters/detectors	\$1,95 each	Sparkfun Electronics
2	Relay 10A 5V	\$7,85 each	Ebay

• Estimated cost for electrical ~ \$107,14

Future Steps

- Machine shapes
- Assemble shapes to fit on carts
- Implement electrical systems
- Run tests on entire system
- Machine components of starting and stopping mechanisms
- Assemble starting and stopping mechanisms