Welcome

Detailed Design Review Team Robosub

Project Advisors: Dr. Bruce Harvey Dr. Chiang Shih

Team Members

ECE

ME

Antony Jepson Lead PM

Ryan Kopinsky Secretary

Hang Zhang Treasurer

Eric Sloan *PM*

Kashief Moody Secretary

Tra Hunter Treasurer

SSC Pacific TRANSDEC Pool

Training (Gate)

- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)

 Laurel Wreath (Locate, Recover, Surface, and Release)

- Training (Gate)
- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)
- Laurel Wreath (Locate, Recover, Surface, and Release)

- Training (Gate)
- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)
- Laurel Wreath (Locate, Recover, Surface, and Release)

- Training (Gate)
- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)
- Laurel Wreath (Locate, Recover, Surface, and Release)

- Training (Gate)
- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)
- Laurel Wreath (Locate, Recover, Surface, and Release)

- Training (Gate)
- Training (Touch Buoys)
- Obstacle Course (Pass Over PVC)
- Gladiator Ring (Drop Markers in Bins)
- Kill Caesar (Launch Torpedoes Through PVC Cutouts)
- Laurel Wreath (Locate, Recover, Surface, and Release)

System Outline

Power Outline

AUV Design (Revised) – Angled View

AUV Design – Current Status

Guidance System

Antony Jepson

Guidance System Overview

Objective

Track vehicular heading and contribute to AUV's internal model of its position.

Requirements

Measure

- > yaw, pitch, and roll
- acceleration
- heading
- depth
- Locate Pinger

Guidance System Status

Current

- Measure pitch
- ✓ Measure yaw
- ✓ Measure roll

Remaining

- Determine heading
- Determine depth
- Locate pinger

Guidance System Overview

Arduinoboard-UNO

Phidget 3/3/3 IMU

SQ26 Hydrophone (x4)

Thrusters x6

Beagleboard-xM

IMCL Submersible Pressure Sensor

Guidance System Overview

Ryan

Method

Phidget 3/3/3 Mechanical Drawing

Adapted from: http://www.starlino.com/imu_guide.html

Code Sample

int CCONV SpatialDataHandler(

```
CPhidgetSpatialHandle spatial,
 void *userptr,
 CPhidgetSpatial SpatialEventDataHandle *data,
 int count)
SpatialData {
     double acceleration[3];
     double angularRate[3];
     double magneticField[3];
     Timestamp time;
};
static const double tol accel 0 = 0.2;
static const double tol accel 1 = 0.2;
static const double tol accel 2 = 0.2;
```


Guidance System Components

Hydrophone Mounting Rack

Risk Analysis

Risk	Components used are not accurate enough for useful measurements in the AUV
Probability	Low
Consequence	Moderate
Strategy	 Test components thoroughly for accuracy. Order new components if necessary. Combine measurements from different sensors to increase precision.

Test Plan / Report

Test Description	Pass / Fail	Notes
Frequency response test	Р	Works up to 37kHz
Depth sensor test	N/A	Pending arrival.

Electrical System and Main Controller

Hang Zhang

Hang

Electrical System

Voltage Regulator Board

Voltage Regulator Board Summary				
Total System Efficiency	95.6 %			
Total System Cost	\$50			
Total System Power	2.84 W			
Dissipation				

Propulsion System

Hang

Propulsion System (Code Snippet)

```
//Top and Bottom Thruster, connected to pin 3
int T TB = 3;
int TDir = 4;
                          // Direction of the thruster
int val;
void setup() {
  pinMode(TDir,OUTPUT);
  pinMode(T_TB,OUTPUT);
}
void loop() {
  val = read_speed();
   . . .
void turn left(int val) {
  analogWrite(TDir,LOW);
  analogWrite(T1 L,val);
  Serial.print("Thruster is now rotating to the LEFT at speed: ");
  Serial.println(val);
}
```

Hang

Mission Control

Mission Control

Hang

Mission Control (Gate Passing)

Risk Analysis

Risk	Vehicle Balance Problem
Probability	High
Consequence	Severe
Strategy	 Develop a good algorithm for balancing the vehicle using data from IMU Conduct extensive tests under different environment or conditions

Test Plan / Report

Test Description	Pass / Fail
Thruster bidirectional rotation	Pass
Communication between Arduino and Host	Pass
Linux inter process communication	Pass
Depth Maintainability	N/A
Vehicle Speed	N/A
Vehicle Balancing	N/A
Competition Timing	N/A

Computer Vision

Ryan Kopinsky

Computer Vision Overview

Objective

Provide the AUV with path and task information.

Requirements

- Identify the path for guidance through the obstacle course
- Identify the tasks in the obstacle course.

Status

Current

- Camera Enclosures
- OpenCV on BBxM
- Path Detection on BBxM

Remaining

- System Upgrade
- Underwater Testing
- Path Detection
- Task Identification

Progress
Ryan

Hardware

Ryan

Hardware – System Upgrade

Logitech C615

Zotac Zbox ID41 Plus

Auto-Light Auto-Focus Intel Atom D525 1.8GHz Dual-Core CPU, 2GB RAM, 250GB HDD, 512MB NVIDIA ION2 GPU

Electronics \rightarrow Computer Vision

Software

Electronics \rightarrow Computer Vision

Path Detection Algorithm

1. Initialize variables and structures

- 1. CvCapture *capture
- 2. IplImage *frame, *hsv_frame, *thresholded
- 2. capture = cvCaptureFromCAM(0)
- 3. Loop
 - 1. frame = cvQueryFrame(capture)
 - 2. cvCvtColor(frame, hsv_frame,CV_BGR2HSV)
 - 3. cvInRangeS(hsv_frame, hsv_min, hsv_max, thresholded)
 - 4. cvDilate
 - 5. cvFindContours
 - 6. cvFitEllipse2
 - 7. Determine angle (major axis of ellipse and x-axis)

New Risks

Risk	Probability	Severity	Mitigation Strategy
Camera Range	Low	Severe	Buy Better Camera
Insufficient Performance BBxM	Moderate	Severe	Switch to PC Platform*

*Due to insufficient performance, the system has been upgraded.

Test Plan / Report

Test Description	Pass / Fail	Notes
Logitech C615 on BBxM	Ρ	640x480 at 3fps 320x240 at 10fps
Basic OpenCV on BBxM	Ρ	640x480 at 1fps
Path Detection on BBxM	F	Not enough performance to run mission controller and path detection
Stress Test on BBxM	F	Very slow when processing a lot of data/images
Stress Test on Zotac ID41	N/A	Will be done on Wednesday, February 8, 2012

Mechanical Overview and Hull/Camera Enclosures

Eric Sloan

Status

Current

- Frame
- Hull
- Camera Enclosures
- Compressed Air Distribution
 System
- Torpedoes
- Torpedo Launchers
- Marker Dropper
- Thrusters
- Pressure Transducer
- Hydrophones Array

Remaining

- Revised Electronics Rack
- Grasp/Release Mechanism Jaws
- ► SEACON[™] Connectors
- PCB Versions of Solenoid
 Valve and Hydrophones
 Interface Circuits
- Installation of Electronics Inside Hull

Camera Enclosures (Revised)

Final AUV Design (Revised) - Front

Final AUV Design (Revised) - Side

Eric

Final AUV Design (Revised) - Side

Eric

Final AUV Design (Revised) - Side

Final AUV Design (Revised) - Top

Final AUV Design (Revised) - Top

Final AUV Design (Revised) - Top

Eric

Interior Hull Layout (Revised)

Risk Analysis

Risk	Vehicle density greater of less than optimal target density
Probability	Low
Consequence	Moderate
Strategy	Symmetrically add "dummy mass" to adjust the vehicle's density while naturally balancing the vehicle

Test Plan / Report

Test Description	Pass / Fail	Notes
Watertight Test – Hull (Pre- SEACON)	Pass	No leakage
Watertight Test – Camera Enclosures (Version I)	Pass	No leakage
Preliminary Weight Test	Pass	On pace for projected total AUV weight of 84 lb
Watertight Test – Camera Enclosures (Version 2)	N/A	Will be completed and tested this week
Watertight Test – Hull (Post- SEACON)	N/A	Will be conducted upon arrival and integration of SEACON [™] connectors

Compressed Air Distribution System and Torpedo Launcher

Kashief Moody

Compressed Air Distribution Overview

Objective

 Distribute pressureregulated air to the grasp/release mechanism and torpedo launchers upon command from the Arduino Duemilanova Board

Requirements

- Store air used for mechanical sub-systems.
- Reduce initial air pressure to a desired operational pressure
- Allow individual actuation of the mechanical subsystems

Status

Current

System completed

Remaining

- Test for leakage through gas lines when submerged
- Optimize operational air pressure (≈ 100 psi)

Compressed Air Tank and Regulators

System Diagram

Mech. Subsystems → Compressed Air Distribution System

Test Plan / Report

Test Description	Pass / Fail	Notes
Solenoid Valves	Pass	Actuate at $4V - 5V$ rather than the specified $12V$
Pressure Regulation/Gas Line Leakage	Pass	Pressure regulation scheme functioned as planned

Torpedo Launchers Overview

Objective

 Individually launch torpedoes through designated PVC cut-outs (Kill Caesar)

Requirements

- Secure the torpedoes prior to actuation
- Accurately and consistently launch the torpedoes at a sufficient speed when actuated
- Proper density, balance, and hydrodynamics of torpedoes

Torpedo Launcher Design (Revised)

Status

Current

System completed

Remaining

Test underwater

Test Plan / Report

Test Description	Pass / Fail	Notes
Torpedo Performance (Density, Balance, Hydrodynamics)	Pass	
Torpedo Launcher Test - Air	Pass	Accurately flew 8 – 10 feet prior to landing
Torpedo Launcher Test - Water	N/A	Will take place following integration of SEACON™ connectors and electronics

Grasp / Release Mechanism and Marker Dropper

Tra Hunter

Grasp / Release Mechanism Overview

Objective

 Complete the Laurel Wreath (PVC recovery and octagon) section of the obstacle course.

Requirements

- Grasp a laurel wreath rescue object
- Hold rescue object while vehicle surfaces
- Submerge and release the laurel wreath

Tra

Status

Current

- Finalize details of jaw design
- Test single-acting air cylinder with compressed air distribution system

Remaining

- Manufacture components
- Test integrated mechanism both in air and under water

Tra

Components

Test Plan / Report

Test Description	Pass / Fail	Notes
Single-acting air cylinder test	Ρ	
Grasping capabilities	N/A	Pending construction

New Risks

Risk	Mechanism Grasps Either Too Slow or Too Fast
Probability	Moderate
Consequence	Low
Strategy	Adjust regulated compressed air pressure as needed without significantly compromising performance of torpedo launchers

Marker Dropper Overview

Objective

 Complete the Gladiator Ring (Drop-In Bins) section of obstacle course

Requirements

- Secure two markers until actuated
- Drop the markers individually upon command
Tra

Status

Current

- Mounted on bottom of AUV
- Determine servo condition

Remaining

- Find alternate servo motor
- Integrate servo into electrical system
- Test accuracy

Components

Tra

Test Plan / Report

Test Description	Pass / Fail	Notes
Servo motor test	Fail	Order new servo
Ball drop test	N/A	Pending construction

Tra Hunter

Current Budget

Fall Expenditures		\$4,479.36
Spring Expenditures	Compressed Air Tank,	\$313.71
	Regulators, Gas Lines	
	SQ26-01 Hydrophones (2)	\$415.00
	Redesigned Camera	\$52.50
	Enclosures	
	IMCL Submersible Pressure	\$407.47
	Transducer	
	Miscellaneous (Nuts, Bolts,	\$487.95
	Adapters, Adhesives,	
	Sealants, Raw Materials)	
Remaining Expenditures	SEACON [™] Connectors (2)	\$150.00
	Zotac Zbox	\$300.00
	Miscellaneous (Nuts, Bolts,	\$50.00
	Servo Motor)	
Travel/Shipping/Lodging		\$6,700.00
Expenditures		
Competition Fee		\$500.00
Total		\$13,855.99
Current Budget		\$9,433.00
Remaining Balance		-\$4,422.99

Overall Risk Assessment

Antony

Antony

Risk Analysis – Technical

Risk	Cannot Complete All Competition Tasks
Probability	Very High
Consequence	Low
Strategy	Maximize score on existing tasks

Antony

Risk Analysis – Schedule

Risk	Team Member Availability
Probability	Low
Consequence	Severe
Strategy	 Share work across sub-teams. Re-use and distribute when possible.

Risk Analysis – Schedule

Risk	Mis-estimated Schedule
Probability	Moderate
Consequence	Severe
Strategy	 Over-estimate schedule times rather than under-estimate. Have "races-to-the-finish" to catch up.

Antony

Risk Analysis – Budget

Risk	Over-estimate budget
Probability	Moderate
Consequence	Moderate
Strategy	 Carefully estimate our budget Avoid unnecessary purchases Seek additional sponsorship

Schedule

Questions?