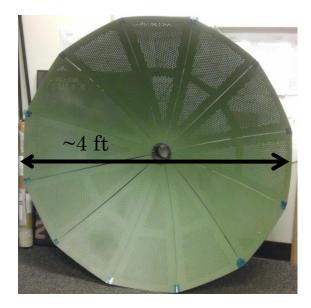
INTERIM DESIGN – TEAM 6 Solid Panel Interlocking Mechanism for a Solid Reflector

Thomas Patten, Ashley Saunders, Cory Slingsby


OVERVIEW

- Introduction
- Selection Criteria
- Decision Matrix
- Design Concept
- Analysis of Design
- Summary

INTRODUCTION

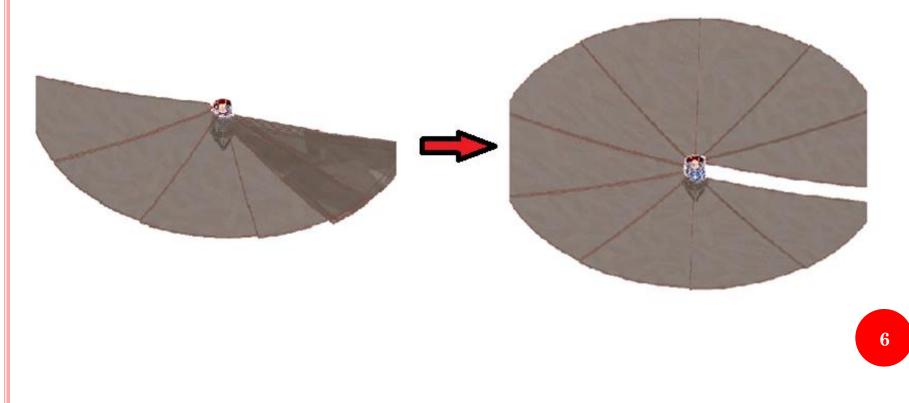
Solid Panel Interlocking Mechanism

- Multiple panels stacked
- Autonomous deployment capabilities
- No gapping in fully deployed configuration
- Reversibility
- Dimensions
 - Minimum thickness = 0.072 inches
 - Maximum thickness = 0.421 inches
 - Diameter = 4.29 feet

VIDEO

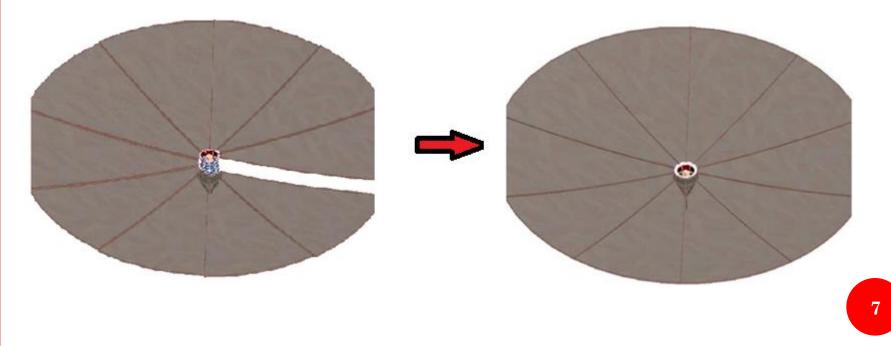
Tim e: 0.0

DEPLOYMENT STAGES

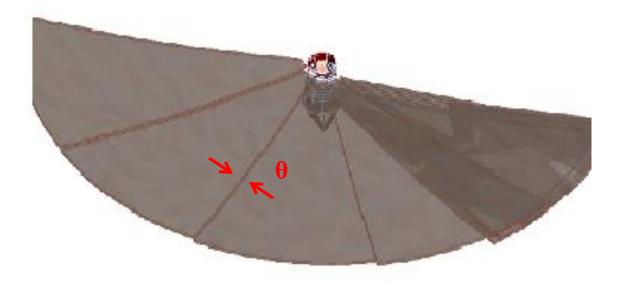

• Stowed

DEPLOYMENT STAGES

\circ Stage 2


• Rotational Deployment

DEPLOYMENT STAGES


• Stage 3

- Lateral Deployment (Collapsing)
- Fully Deployed Dish

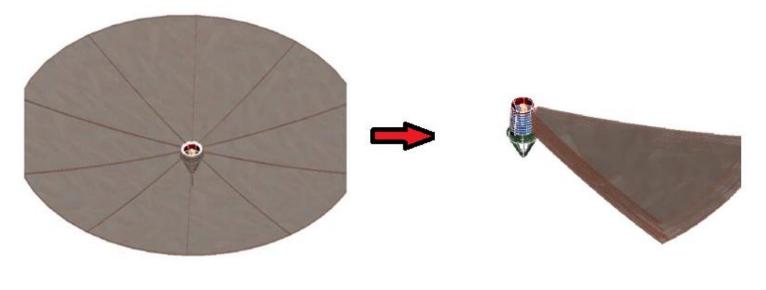
• Reliability – 30%

- Engagement Proximity
 - This is the minimum distance between adjacent panels before the interlocking mechanism can engage.

• Engagement Force

• The force required to engage the interlocking mechanism.

• Magnets create a force


- Security 30%
 - Separation Failure
 - The potential of the panel seams to separate once the interlocking mechanisms have engaged.
 - Stability
 - The ability of the individual components to maintain the continuity of the parabolic curve necessary in the design of the dish.

• Gapping

• Misalignment between adjacent panels. Any gap should be less than 5 mil (0.127 mm)

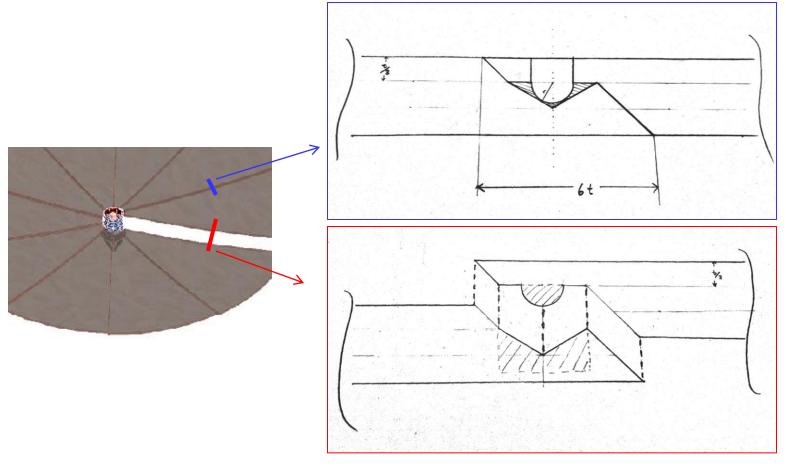
• Reversibility -20%

- The ability to reset the mechanism to allow the panels to return to the stowed position
- Does not require motor to reset, but is preferred

\circ Complexity – 10%

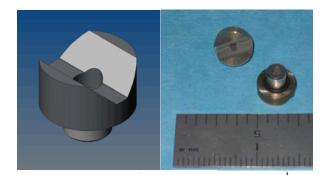
• Intricate designs will incur increased costs for production, and increase potential sources of failure.

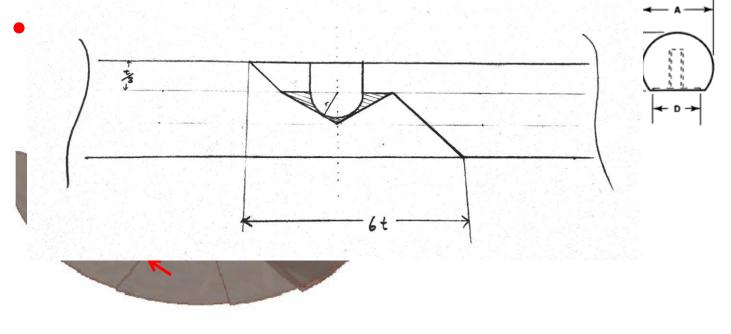
\circ Price -10%


• Cost of the system

DECISION MATRIX

		Magnets		Cup and Cone	
Specifications	Weight Factor	Rating	Score	Rating	Score
Reliable			_		
Engagement Proximity	0.15	5	0.75	4	0.6
Engagement Force	0.15	5	0.75	4	0.6
Security					
Separation Failure	0.1	5	0.5	4	0.4
Stability	0.1	4	0.4	4	0.4
Gapping	0.1	4	0.4	5	0.5
Reversibility	0.2	5	1	5	1
Complexity	0.1	5	0.5	5	0.5
Price	0.1	4	0.4	5	0.5
		Total:	4.7	Total:	4.5


INTERIM DESIGN


• Cup and Cone with Magnets

EXPERIMENTAL ANALYSIS (1 OF 2) KINEMATIC COUPLING (CUP & CONE)

- Geometry
- Dimensional Ratio

EXPERIMENTAL ANALYSIS (2 OF 2)

Magnets
Shape
Force
Engagement Proximity

COST ANALYSIS

• Ideal/Space Applications:

Item	Specs	Quantity	Individual Price	Sub Total
Magnet		20	\$2/magnet	\$40
Panel Material	Graphite Honeycomb	10 panels	\$/weight of material	\$100,000+
			Total:	\$100,040+

• Solely Demonstrating Mechanical Purposes:

Item	Specs	Quantity	Individual Price	Sub Total
Magnet		20	\$2/magnet	\$40
Panel Material	Plastic	10 panels	\$0 (provided)	\$0
			Total:	\$40

SUMMARY

- Interim design is electrically and mechanically passive
- Investigate precision engineering and kinematic coupling methods with magnets

QUESTIONS?

