Team 6 - Final Design Panel Interlocking Mechanism for Solid Reflector

Thomas Patten, Ashley Saunders, Cory Slingsby

Overview

- Introduction
- Design
- Analysis
- Bill of Materials
- Future Plans
- Conclusions
- Questions

Introduction – What Harris Needs

- Alternative Interstellar Reflector Dish
- General Requirements:
 - Higher Surface
 Accuracy
 - Equivalent
 Packing
 Volume
 - Equivalent
 Reliability

Introduction – Where We Fit In

• Our Goal:

Help Harris make an informed decision regarding a particular concept

- Key Questions
 - Can it work? Is it feasible?
 - What are the potential gains?
 - What are the concept's limitations?

Image provided by Harris Sponsor

Introduction – The Concept

- Tangentially Deployed Achieved by hub mechanism design
- High Surface
 Accuracy
 Achieved by rigid
 material
- Interlocking Panels Achieved by panel design

Our Design - Video

Magnet Assisted Kinematic Interpanel Coupling Mechanism

Magnet Assisted Kinematic Interpanel Coupling Mechanism

Kinematic Coupling Components

Why Our Design?

Pros

- Simple no wires /cables
- High positioning accuracy
 - Up to Micron Level
- Active retaining force

Low profile

Cons

- Unexplored use of Magnets
- No mechanical latching
- Magnets have temperature limits

Material Selection 2 of 5

• Stiff Material

Material	Density (kg/m ³)	Elastic Modulus (GPa)	Cost (\$/kg)
Steels	7,850	201-217	0.85
CFRP	1,550	69-150	42.00
Al alloys	2,700	68-82	1.60
Ti alloys	4,600	90-120	70.00

Material Selection 4 of 5

• Strong Material

Material	Density (kg/m ³)	Yield Strength (MPa)	Cost (\$/kg)
Steels	7,850	400-1,100	0.85
CFRP	1,550	550-1,050	42.00
Al alloys	2,700	30-500	1.60
Ti alloys	4,600	250-1,245	70.00

Material Selection 5 of 5

- Cone Material Steel
 - Ferrous, will be needed for magnet attraction
- Cup Material Aluminum
 - Nonferrous, will not interfere with magnet
- Armature Material Aluminum
 - Light weight
- Bracket Material Aluminum
 - Ease of machining, weight

Manufacturing Parts

- Conventional Machining
 - Bracket requires minimal machining
 - Armatures requires machining
 - Cone hemisphere machined from steel sphere/rod
 - V block machine from Aluminum stock
 - Panels already built, minimal modifications

Analysis- Magnets 1 of 2

Permanent Magnet Type	Maximum Energy Product (MGOe)	Coercive Force (kOe)	Maximum Working Temperature ºC
Ceramic5	3.4	2,400	400
Sintered Alnico 5	3.9	620	540
Cast Alnico 8	5.3	1,650	540
Samarium Cobalt 20 (1,5)	20.0	8,000	260
Samarium Cobalt 28 (2,17)	28.0	9.500	350
Neodymium 33UH	33.0	10,700	180
Neodymium N45	45.0	10,800	80

Neodymium

• Pros:

-High energy product and coercive force

- Cons:
 - -Low mechanical strength (brittle)
 - -Moderate temperature stability

Samarium Cobalt

• Pros:

-High energy product, coercive force and temperature stability

• Cons:

-Low mechanical strength (brittle)-Higher cost

Analysis – Magnets 2 of 2

- Exposed temperature dependent on
 - Orientation to sun
 - Material emissivity
 - Material absorptivity
- Special coatings used
 - Keep temperature
 range between
 -129°C and 120°C

Material	Maximum Working Temperature
NdFeB N	80 °C
NdFeB M	100 °C
NdFeBH	120 °C
NdFeBSH	150 °C
NdFeBUH	180 °C
NdFeB EH	200 °C

Magnet Selection

- Neodymium Ring Magnet
 - Grade N42
 - Approximated magnet pull force: 6.5 lbs
 - Nickel-copper-nickel coating
 - Dimensions:
 - Outer diameter: 0.5 inch
 - Thickness: 0.125 inch
 - 0.25 inch x 0.125 inch 90 degree taper countersunk hole
 - Price: \$0.99/magnet

Courtesy of Magnet4Less.com

Bill of Materials

Component	Specifications	Vendor	Price per unit	Quantity	Sub Total
	1/8" OD x 1/16" ID x	K&J Magnetics,			
Neodymium Magnet	1/16" thick	Inc.	\$0.79 - \$3.75	12	\$9.48 - \$45.00
Cone	Steel	Bal-tec	\$9.90 - \$31.50	12	\$118.80 - \$378.00
Aluminum 6061					
(Bracket)	1/4" x 1" x 6'	McMaster Carr	\$16.02	5	\$80.10
Aluminum 6061 (V-					
block)	1/2" x 1" x 3'	McMaster Carr	\$17.23	1	\$17.23
Sheet Aluminum (Z-	0.10" thick, 12" x				
Arm)	24" plate	Speedy Metals	\$16.85	3	\$50.55
	1/8", Flat Head, pack				
Screws	of 100	Home Depot	\$4.65	1	\$4.65
Bolts	1/8", pack of 100	Home Depot	\$4.24	1	\$4.24
		The Binding			
Ероху	1.7 oz, Clear	Source, LLC	\$15.52	1	\$15.52
				TOTAL:	\$300.57 - \$595.29

Future Plans – Testing 1 of 3

- Answer the question: *Is it feasible*?
 - Kinematics: Show concept can be constructed. Show tangential deployment can be achieved.
- Answer the question: *What is there to be gained?*
 - Higher Surface Accuracy (Harris already knows this)
 - Packing Volume Show concept can be implemented with similar volume and fairing constraints
- Answer the question: *What are the limitations?*
 - What loading conditions will cause separation?
 - What temperature conditions will cause failure?
 - Will launch require extra preparations?
 - Any unpredicted issues?

Future Plans - Goals 2 of 3

- General Goals:
 - Work with sponsor to continue developing
 Postprocessing plans
 - Work with school shop to develop fabrication plan and finalize part sources
 - Order Parts
 - Assemble
 - Conduct Postprocessing

Future Plans - Schedule 3 of 3

Spring'12 Schedule

Conclusions

- Straightforward approach to satisfying client needs
- Simple, Cost Effective Design
- Design is passive, adjustable, utilizes recycled material

Safety Concerns 1 of 2

- Magnet Safety
 - Risk 1: Pinching
 - Risk Assessment:
 - Pinching becomes a serious risk to fingers and skin as magnet size increases.
 - Pinching should not be a concern give the size of magnets being considered.
 - Precautions:
 - If pinched, a brass wedge may be insert to prevent the magnets pinching further as the magnets are removed

Safety Concerns 2 of 2

- Risk 2: Chipping
 - Risk Assessment:
 - Some magnet formulas are more prone to chipping than others.
 - Magnets should not receive high mechanical loads.
 - Risk increases with magnet size.
 - Chipping should not pose much risk due to magnet size.
 - Precautions:
 - Be aware of the risk, know what magnet formulas and situations can lead to higher risk levels
 - PPE Eyewear is recommended

Acknowledgements

- Mr. Gustavo Toledo, Harris Co. Project Sponsor
- Dr. Hovsapian, Dr. Kosaraju, Dr. Shih Faculty Advising
- Bill Starch, Shop Fabrication Research

References

- 1. Ashby, M. F. *Materials Selection in Mechanical Design*. Third ed. Amsterdam: Butterworth-Heinemann, 2005. Print.
- 2. <u>http://www.mcmaster.com/#</u>
- 3. <u>http://www.kjmagnetics.com/products.asp?cat=16</u>
- 4. <u>http://www.mceproducts.com/knowledge-base/article/article-dtl.asp?id=32</u>
- 5. <u>https://www.bindingsource.com/Products/productView.asp?categoryID=2022&CategoryName=3</u> <u>M%99+Scotch%2DWeld%99+DP100+Epoxy+Adhesive&productID=18518&productName=DP100+</u> <u>3M%99+Scotch%2DWeld%99+Epoxy+Adhesive%2C+1%2E7+oz+%2D+Very+Clear</u>
- 6. <u>http://www.homedepot.com/webapp/wcs/stores/servlet/Search?keyword=nut&selectedCatgry=</u> <u>SEARCH+ALL&langId=-1&storeId=10051&catalogId=10053&Ntpc=1&Ntpr=1</u>
- 7. <u>http://www.rare-earth-magnets.com/Permanent-Magnet-Selection-and-Design-Handbook.pdf</u>
- 8. Design of Accurate and Repeatable Kinematic Couplings. Martin L. Culpepper, Alexander Slocum and Peter Baile. Precision Engineering Journal. http://www.aspe.net/publications/Annual 2002/PDF/POSTERS/1equip/6novel/896.PDF
- 9. Design of Low Cost Kinematic Couplings Using Formed Balls and Grooves in Sheet Metal Parts. Martin L. Culpepper, Alexander Slocum and Peter Baile. Precision Engineering Journal. http://www.aspe.net/publications/Annual_2003/PDF/2equip/6novel/1311.PDF
- 10. <u>http://www.precisionballs.com/index.html</u>
- 11. <u>http://www.speedymetals.com/default.aspx</u>
- 12. <u>http://www.magnet4less.com/index.php?cPath=1_13&osCsid=8195f9bb81c2136f53169f623acf0_68c</u>

Questions?