Project Overview for MEAC

RASC-AL RoboOps Competition Team 11: Hexcavator

Ricardo Asencio Daniel Bucken Jason Rhodan

Myles Bean Parker Harwood **Matthew Wilson**

Florida A&M University Florida State University

The Task

- **Planetary Rover**
- **Capable of collecting rock** samples
- Controlled over wireless broadband network
- Limited size and weight
- Handle various terrain

Competition Site: Johnson Space Center Rock yard

Our Solution

- Hexapedal locomotion
- Optimized sample extraction
- On-board computing

Competition Entry

- Limited participant slots
 - Project proposal due December, determines eligibility
 - Up to 8 teams may compete
 - Accepted teams receive NASA funding

Contingency Plan

- Hexcavator
 - 2012 Lunabotics competition entry
 - Same type of rover
 - Uses similar hardware
 - Test-bed for current systems

Public Outreach

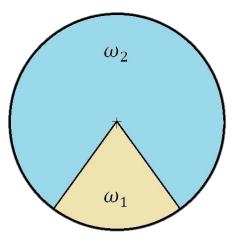
- NASA wishes to increase public interest in space exploration
 - Educational events
 - Team website
 - Social media
 - Video reports and documentation of progress

Planned E/PO

- Challenger Learning Center Demo
- Elementary School Visits
- Like us on facebook!
 - FAMU-FSU Robo Ops

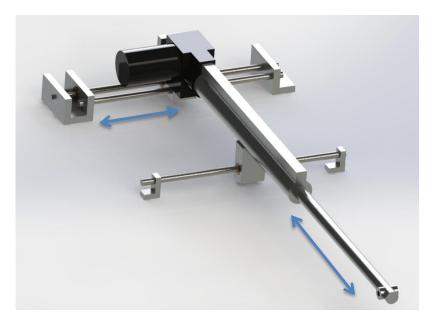
Hexapedal Locomotion

- Advantages:
 - Has been proven in a wide range of terrains
 - Negates need for obstacle avoidance
- **Unique to the RASC-AL ROBO-OPS** Competition



Locomotion – How it works

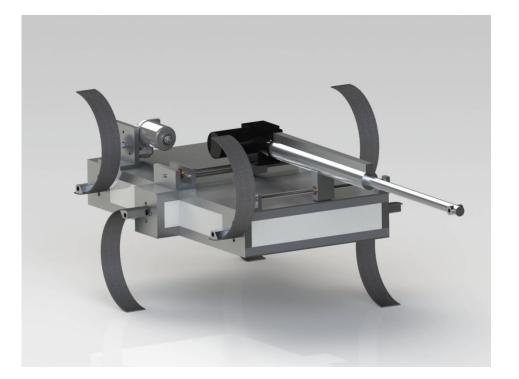
- Legs controlled in triplets
- Buehler Clock

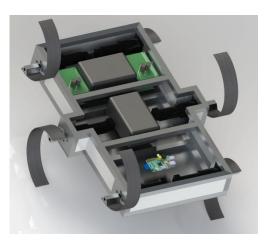


Sample Extraction

- **Planar Arm** ullet
 - Two linear axes
 - Legs provide vertical adjustment

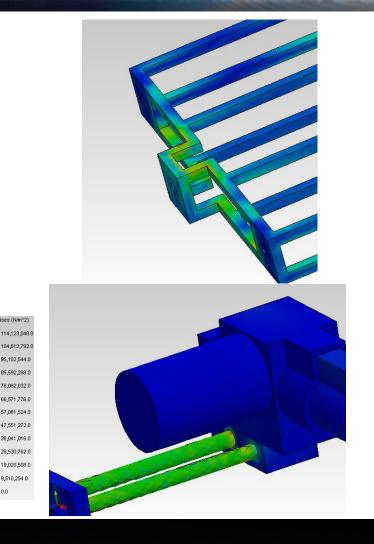
Sample Extraction (cont.)


- Pincer/Scoop Hybrid Claw
 - Combines speed and precision
 - Servos for simple control
 - Features to enhance effectiveness
 - Viewing window, teeth, slots



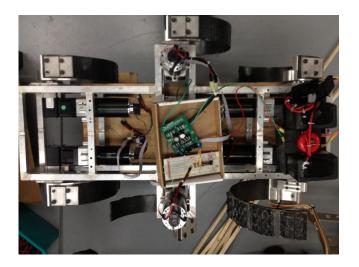
Design Validation - Modeling

- **Complete CAD Model**
- Layout
- **Center of Gravity**
- Moment of Inertia



Design Validation - Finite Element Analysis (FEA)

- Keeps weight to a minimum
- **Ensures proper factor of safety**
- FEA done on:
 - Frame
 - Linear Supports for Arm



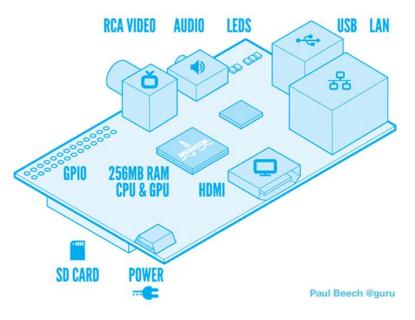
Design Validation - Prototyping

- Frame
- Arm/Gripper ${\color{black}\bullet}$
- 2012 Lunabotics Platform

Florida State University

Vision System

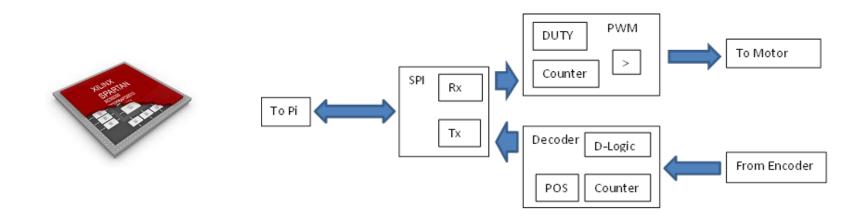
- **Navigation camera**
 - Boom mounted pan/tilt Internet **Protocol camera**
- Sample extraction camera
 - Webcam fixed to arm


Communications

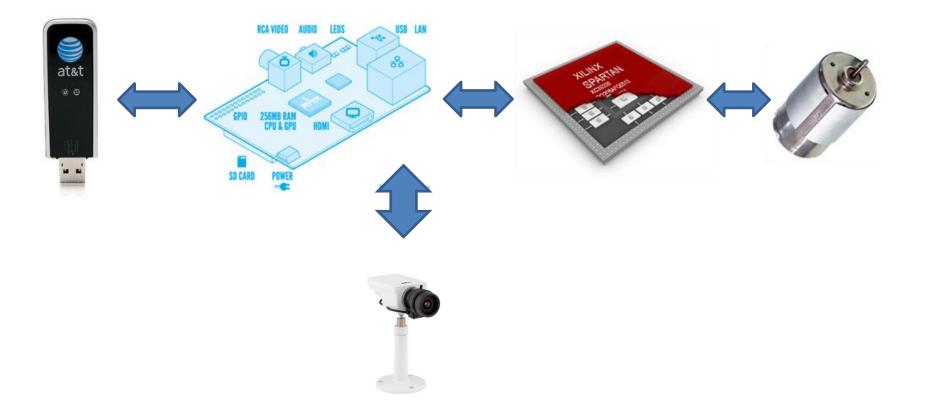
- On board communications
 - Raspberry Pi is interfaced with peripherals (motors, sensors, decoders) using SPI (Serial Peripheral Interface)
- Wireless communication
 - Robot network connected through 3G/4G USB network adapter
 - SSH used to control on-board computer

Computing

- Control Requirements
 - Wireless connectivity
 - Video streaming/processing
 - Motor control
 - Buehler algorithm
 - Pulse width modulation
 - Quadrature decoders
- Need on-board computer


Raspberry Pi (Linux)

Controls Hardware


- **Need minimum 6 PWMs and decoders**
- **Designing Hardware with VHDL (VHSIC Hardware Description Language**)
 - Provides customizable logic
- Xilinx Spartan 3E

Control System Diagram

		Fall Semester																
Project Phase		September					October November December											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 1
Planning and Research																		
Establish meeting schedule																		
Establish team member roles, code of conduct																		
Research competition rules, previous work																		
Develop preliminary project budget																		
Develop preliminary project schedule			_															
Telecommunications research																		
Plan community outreach efforts																		
Concept Generation and Design Selection Phase																		
Selection of locomotion method																		
Concept generation for robotic arm and claw																		
Selection of telecommunications system																		
Design selection for robotic arm and claw																		
Concept generation for vision system																		
Design selection for vision system																		
Control Development on Exisiting Robotic Platform																		
Single motor control with Buehler Clock																		
Multiple motor control with Buehler Clock																		
Establish locomotion with wired control																		
Establish locomotion with wireless control																		
Vision and Telecommunications System Developme	nt										-							
Establish BOM for telecommunications system																		
Establish BOM for vision system																		
Select software platform for telecomm interface																		
Design of New Robotic Platform																		
Size robot (aspec ratio, frame dimensions)																		
Select motors								_										
Materials Selection																		
Dynamic modeling																		
Detailed design of robotic arm and claw																		
Component Layout																		
Packaging (Stowed/Unstowed)																		
Complete Cad model package																		
Project Deliverables															1			
Code of Conduct																		
Needs Assessment	_																	
Product Spec and Project Plan																		
Conceptual design review and presentation																		
Team evaluation report	_																	
Interim design review presentation and report																		
Final design review presentation and report																		
Submit project proposal to competition hosts																		

Completed Phases

- Research
 - XRL, NASA, Hexcavator, 2011-2012
- Product Specification
 - Rules
- Concept Generation
 - Manipulator, Chassis, Vision, Computing
- Feasibility assessment
 - Costing, Sponsorship, Components

Current Phase

Currently Undergoing Preliminary Design

- **Refining sample acquisition system**
- **Refining chassis design per motor selection**
- Integrating motor controller with computing hardware
- **Testing control algorithms**
- Selecting cameras and establishing configuration for vision system
- **Drafting proposal for NASA**

Sponsorship

Sponsor	Donation						
Florida Space Grant Consortium	\$1000 Grant						
Scansorial and Terrestrial Robotics and Integrated Design Lab	Laboratory space and use of tools						
Center for Intelligent Systems, Controls and Robotics	\$3000 Grant						
MISUMI USA	\$1,300 Store Credit						
Progressive Automation	Linear Actuator						
Maxon Motors	40% off MSRP						
Solidworks	6 Licenses						

Goals

Fall 2012

- Establish communications Manufacture rover (Jan.-
- **Develop control** • algorithms to get **Hexcavator** walking
- **Finalize design**
- Gain entry into competition

Spring 2013

- Feb.)
- System tests (Mar.-May)
- Refine locomotion
- Compete
- Win!

