Concept Design Review

RASC-AL RoboOps Competition Team 11: Hexcavator

Ricardo Asencio Daniel Bucken Jason Rhodan

Myles Bean Parker Harwood Matthew Wilson

Florida A&M University Plorida State University

Inspiration

Florida A&M University Florida State University

The Task

- Planetary Rover
- Capable of collecting rock samples
- Controlled over 3G/4G network
- Limited size and weight
- Handle various terrain

The Solution

- Hexapedal Design -XRL
- On-Board Computing
- Arm/Claw

Robotic Arms and Grippers

- Successful designs from 2012 competition
 - Worcester Polytechnic Institute
 - California Institute of Technology
 - University of Maryland

Worcester Polytechnic Institute

- Overview
 - -4 DOF
- Pros/Cons

Overview

-6 DOF

Pros/Cons

University of Maryland

- Overview
 - -4 DOF
- Pros/Cons

Arm Concept 1 - Pulley

Pros:

- •Adjustable reach
- •Operates in 3 planes
- Can use almost any claw designBucket will not interfere with ground clearance

Cons:

- •Pulley system open to elements
- •Complex control (4 inputs required)
- •May require front end extension of the frame

Florida A&M University

Florida State University

Arm Concept 2 – Manipulator

Florida A&M University Florida State University

Arm Concept 3 – Planar Arm

Claw movement is purely planar, vertical adjustments made using legs

Pros:

•3 Motors/Actuators

- Simple to control and construct
- Cheap
- •Keeps center of gravity low

•Compact

Cons:

- •Requires front-mounted box
- •High leg control precision required

Florida A&M University Florida State University

Gripper Concept 1 – Pincer

Florida A&M University Florida State University

Gripper Concept 2 - Scoop

Florida A&M University Florida State University

Gripper Concept 3 – Hybrid

Florida A&M University Florida State University

Gripper Concept 4 – Universal Jamming

Pros:

- •Can easily grip any shaped object
- •Does not require specific orientation to the object
 - being lifted
- Inexpensive and simple to make

Cons:

- •Can be damaged by sharp objects
- •Will pick up objects adjacent to target object
- •Cannot provide precision gripping

Pan/tilt features

 Standalone Video Streaming

Outdoor Use

Camera Concept 2 – Web Cam

 Requires Onboard Computer

Less Networking

Cheaper

Single Board Computer

- Ex. Raspberry Pi
 - Onboard computer for video/communication
 - Not enough GPIO for motor control
 - Verified peripherals
 - Includes
 - USB 3G dongles
 - Powered USB hubs
 - USB Webcams

Microcontroller Units (MCU)

- Ex. Arduino
 - Pros
 - Easy to use library
 - Plenty of GPIO pins
 - PWM, I2C, SPI
 - WiFi Enabled
 - Cons
 - No video/image processing
 - 16 MHz CLK
 - Slow PWM frequency

ITX Motherboard

Pros

- Full Desktop Computer
 - Processing power
 - Video/image processing
- Cons
 - All Communications are protocols (PCIe, USB, etc.)
 - Expensive Components
 - CPU, RAM, Power Supply, etc.
 - Power Consumption

Computer Concept Selection

	Cost	Power Consumption	Wireless Communication	Computing Power
Raspberry Pi	\$35	3.5W	USB 3G/4G, USB WiFi, SSH	N/A
Arduino	\$50	~1mW	WiFi	16 MIPS
ITX	\$200	150W*	Same as Pi	128,000 MIPS**

Florida A&M University Florida State University

Works Cited

- DLINK. "How Is an IP Camera Different from a Webcam?" Web. 21 Oct. ۲ 2012. <http://resource.dlink.com/view/hello-world/>
- Axis Communications. Outdoor Surveillance Cameras. Web. 21 Oct. 2012. ۲ <http://www.axis.com/products/video/camera/outdoor/index.htm>
- Axis Communications, Axis Communications Power over Ethernet, Web. ٠ 21 Oct. 2012. <http://www.axis.com/products/video/about_networkvideo/poe.htm>
- elinux.org. RPI Hardware. Web. 21 Oct. 2012. ۲ <http://elinux.org/RPi Hardware>

