Final Design

RASC-AL RoboOps Competition Team 11: SpaceHex

Ricardo Asencio Daniel Bucken Jason Rhodan

Myles Bean Parker Harwood Matthew Wilson

Competition Guidelines Summary

- 45 kg weight limit
- Max. stowed dimensions: 1m x 1m x 0.5m
- Sample acquisition system performance
- On-board video feed for navigation and control
- Communications between rover and operator(s) over commercial wireless broadband network
- **Proposal due December 9, 2012**
 - Drafted and distributed for review

Design Solutions from Guidelines

- Use of lightweight materials
- **Rover scaled using XRL dimensions**
- **Minimize SEM mobility**

- Implement IP cameras for site surveying and precise sample acquisition
- Utilize 3G/4G router to network on-board systems

Spring Semester Planning

If Selected:

- -Rover Development
- -6 Deliverables required for competition
- -Required web and physical E/PO

Contingency Plan: -Hexcavator

CAD Model

Stowed Length	86.9 cm
Stowed Width	70.8 cm
Stowed Height	46 cm
Weight	40 kg
Ground Clearance	15 cm
Tipping Angle	43.2 °

Motor Selection

	Continuous Torque	Stall Torque	Nominal Rotational Speed
XRL	2.3 Nm	30.52 Nm	187 rpm
Desired	17.1 Nm	226.74 Nm	120 rpm
Selected	17.4 Nm	383.56 Nm	132 rpm

Dynamic Scaling:

Mass			
XRL (m ₁)	10kg		
Competition Max (m ₂)	45kg		

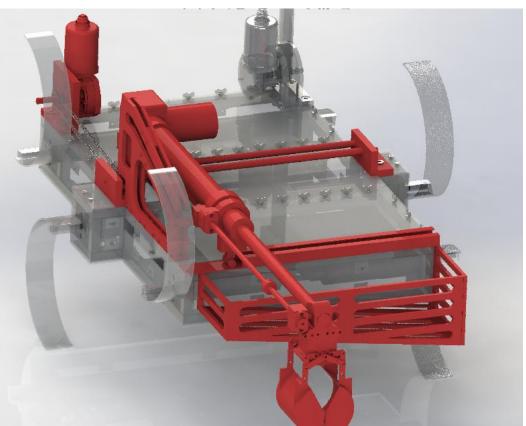
$$\tau_2 = \tau_1 \left(\frac{m_2}{m_1}\right)^{\frac{4}{3}}$$

Motor Selection

maxon motor

driven by precision

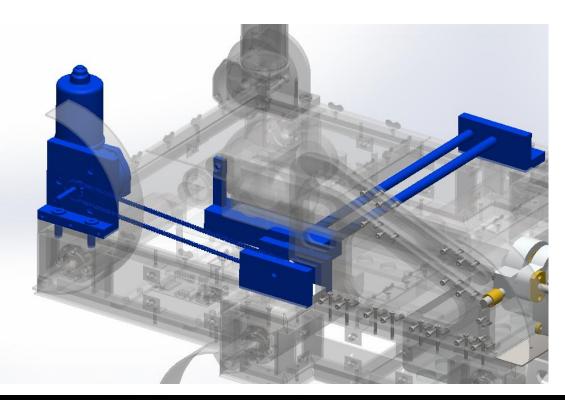
- RE50 Motor
- GP 52 Gearbox
- HEDL 5540 Encoder



Supply Voltage	24 V
Power	200 W
Weight	1.9Kg
Encoder Counts/Revolution	108,500
Overall Length	207mm
Discounted Price (each)	\$867.75

Sample Extraction Module (SEM)

- SEM design takes advantage of non-planar nature of robot
- Legs used for vertical movement
- **Fast extraction times**
- Low algorithmic complexity



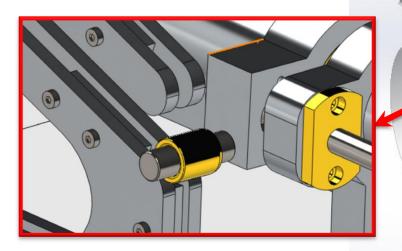
X-Axis

- Lead screw linear drive for movement
- Chain driven for spatial reasons

- High torque (27 Nm)
- 512 count encoder on lead screw for precision
- 12" traverse
- 1.5 in/s max speed

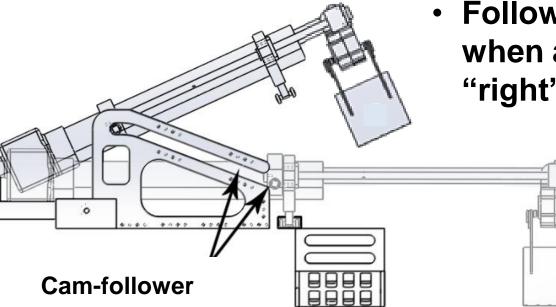
Z-Axis

- High- force linear actuator for movement (200 lbf)
- 12" useable extension
- Maximum extension speed of 1.5 in/s



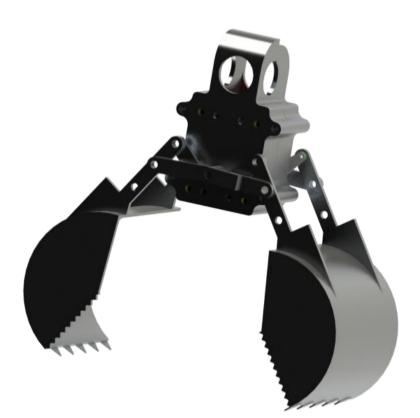
Sample Storage

- Box must be accessible to end effector while still constraining cargo
- Passive DOF added



Storage Procedure

- Arm retraction coupled to pitching about base using cam-follower
- Follower only accessible when arm is in extreme "right" position



Florida State University

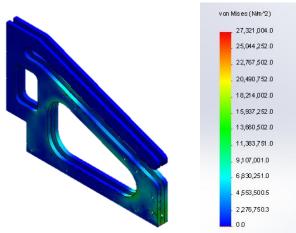
Florida A&M University

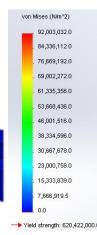
End Effector

- Pincer/Scoop Hybrid Claw
 - Combines speed and precision
 - Servos for simple control
 - Features to enhance effectiveness
 - Viewing window
 - Teeth

Camera Boom

- Single motor to raise boom
- Backstop to limit rotation
- Worm gear in motor negates need for locking mechanism




Finite Element Analysis

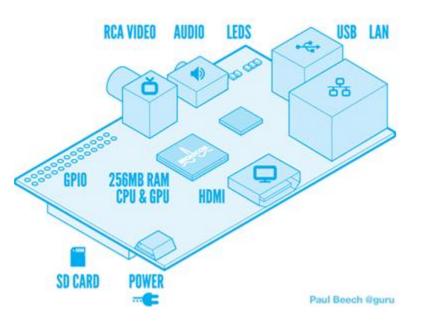
Follower Slot:

- Minimized material
- Ensured that it could withstand maximum force from linear actuator (200 lbs)

-+ Yield strength: 55,148,500.0

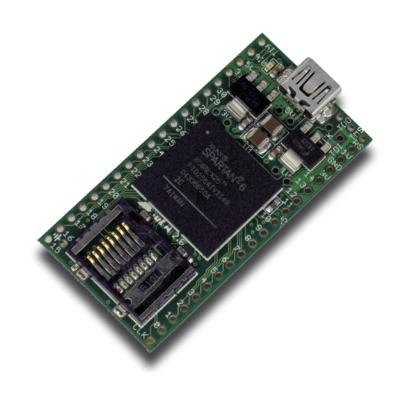
Guide Rail:

- Chose steel over aluminum
- Tested with half of robot's weight



Raspberry Pi

- Dedicated Serial Peripheral Interface (SPI)pins
- 3.5 W Power Rating
- 2 Universal Serial Bus (USB) Ports
- Ethernet Port
- Open Source Libraries
 - wiringPi
 - wiringPiS



XuLA2-LX25

- Xilinx Spartan 6 FPGA
 - 24,051 Logic Cells
 - 4 Digital Clock Managers
 - 2 Phase Lock Loops
- 33 Input/Output Pins
- 9 grams
- Uses Flash memory
 Non-volatile
- 51mm x 25mm

Pantech UML290

- USB Modem for Verizon
- Technology Bands: - 4G LTE, CDMA, GSM
- 51 grams
- Requires 150 MHz Processor
- Requires 64 MB RAM
- Backwards Compatible with 3G

Sponsors

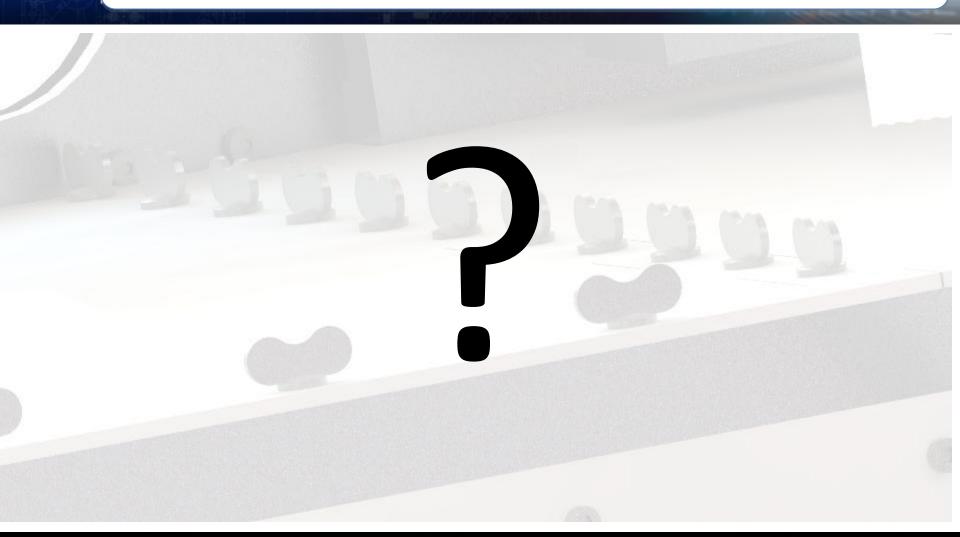
CENTER FOR INTELLIGENT SYSTEMS, CONTROL, AND ROBOTICS

Empowering Engineers with Configurable Components

Lowest Prices in North America

maxon motor

driven by precision



19

Questions

Spring Semester Planning

Task Name	Duration	Start	Finish	Dec '12 Jan '13 Feb '13 Mar '13 Apr '13 May '13
				2 9 16 23 30 6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26
Design Refinement		Wed 12/19/12		
Purchasing	27 days	Fri 12/28/12	Mon 2/4/1	
Critical Components	3 days	Fri 12/28/12	Tue 1/1/	
Final Components	2 days	Fri 2/1/13	Mon 2/4/	
Manufacturing	35 days	Wed 1/2/13	Tue 2/19/1	
Frame Fabrication	25 days	Wed 1/2/13	Tue 2/5/	
Machining	20 days	Wed 1/2/13	Tue 1/29/	
Leg Manufacturing	15 days	Wed 1/2/13	Tue 1/22/	
S.E.M Mounting	5 days	Wed 2/6/13	Tue 2/12/	
Camera Boom Mounting	5 days	Wed 2/6/13	Tue 2/12/	
Electrical Component Mounting	5 days	Wed 2/6/13	Tue 2/12/	
Final Assembly	5 days	Wed 2/13/13	Tue 2/19/	Č
Component Testing	50 days	Wed 1/2/13	Tue 3/12/1	
S.E.M. Testing	10 days	Wed 2/20/13	Tue 3/5/	
Locomotion Control Development on Existing Platform	20 days	Wed 1/9/13	Tue 2/5/	
Locomotion Testing on Competition Platform	15 days	Wed 2/20/13	Tue 3/12/	
Wireless Control Testing	20 days	Mon 1/21/13	Fri 2/15/	
Video Testing and Refinement	20 days	Wed 1/2/13	Tue 1/29/	
System Testing	50 days	Wed 3/13/13	Tue 5/21/1	
Sample Pickup Testing	15 days	Wed 3/13/13	Tue 4/2/	
Obstacle and Terrain Testing	15 days	Wed 4/3/13	Tue 4/23/	
Simulated Time-delay Testing and Practice	10 days	Wed 4/24/13	Tue 5/7/	
Competition Dry Runs	10 days	Wed 5/8/13	Tue 5/21/	
Control Algorithm Refinement	30 days	Wed 4/10/13	Tue 5/21/	
Automation	30 days	Wed 3/13/13	Tue 4/23/	
GUI Development	25 days	Wed 3/13/13	Tue 4/16/	
E/PO Events	90 days	Mon 1/14/13	Fri 5/17/	

Florida A&M University
Florida State University

