Smart Material Museum Exhibit Conceptual Design Review

0

Senior Design Group 13 Glen Ashworth Daniel Roque Isaac Piersall Laura Wainikainen

Presentation Overview

- Problem Statement
- Constraints
- Existing Technology
- Design Concepts
- Decision Matrix
- Conclusion
- References

The Challenger Learning Center in Tallahassee, FL

Problem Statement

- The goal of this senior design project is to design, build, and test a museum exhibit
- Exhibit must utilize and demonstrate the behavior of a smart material and its applications
- Smart material chosen for this project is the piezoelectric type
- Exhibit must be interactive and entertaining for students
- Final product should be delivered to the museum ready for display

Constraints

- Safe for use for school aged children
- Must be space themed
- Sized appropriately to fit in the Challenger Learning Center
- Budget of \$1500

Existing Technology

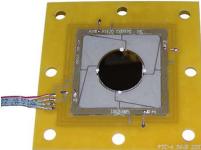
- Piezoelectric
 - electricity (voltage) to mechanical force
- Smart Material Corp.
 - Macro Fiber Composite (MFC)
 - Elongate or contract

Amplifiers

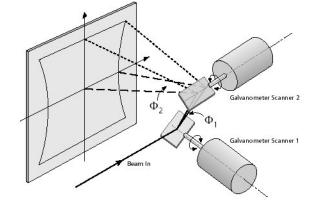
 used to increase the power of signal without otherwise altering it

EMCO High Voltage

- C series
 - Small regulated power amplifiers
 - Run off 11.5-16VDC


PRODUCT SELECTION TABLE

MODEL	OUTPUT VOLTAGE	MAXIMUM OUTPUT CURRENT*1		
C01	0 to 100 V	0 to 10 mA		
C02	0 to 200 V	0 to 5 mA		
C03	0 to 300 V	0 to 3.3 mA		
C05	0 to 500 V	0 to 2 mA		
C06	0 to 600 V	0 to 1.67 mA		
C10	0 to 1,000 V	0 to 1 mA		
C12	0 to 1,250 V	0 to 1 mA		
C15	0 to 1,500 V	0 to 0.67 mA		
C20	0 to 2,000V	0 to 0.5 mA		
C25	0 to 2,500 V	0 to 0.4 mA		
C30	0 to 3,000 V	0 to 0.33 mA		
C40	0 to 4,000 V	0 to 0.25 mA		
C50	0 to 5,000 V	0 to 0.2 mA		
C60	0 to 6,000V	0 to 0.166 mA		
C80	0 to 8,000V	0 to 0.125 mA		

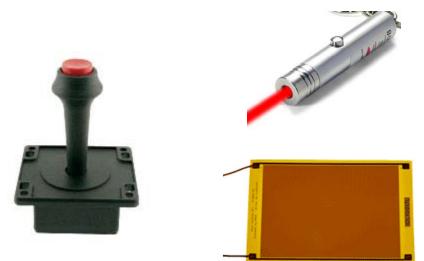

Complete List of Models on page 2

Laser and Motion

- Any Class 2 or Class 3A
 - <5 mW beam power
 </p>
 - Most laser pointers
 - offers wide variety of colors
- Direct and Indirect motion
 - Direct: physically move laser
 - Indirect: move one or more mirrors

Misc. Parts

- Light sensors
 - Photodiode, phototransistor, photo-resistors
- User interface
 - Joystick
 - Digital
 - Analog



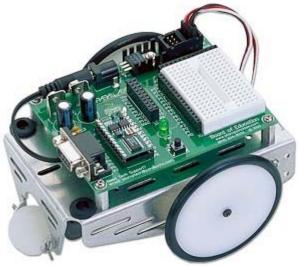
All design concepts utilize....

- Two bending piezoelectric ceramics
- Two amplifiers
- Joystick
- Laser

- Final output of the laser is controlled via user input from joystick
- Each amplifier and ceramic control one degree of freedom
- Each design concept also requires additional supplies unique to the design.

Design Concept I: Controlling Curiosity

- Use direct/indirect laser control to manipulate the movement of a robot.
- Theme: Curiosity Mars Rover
- Operator guides the rover through a maze set up in the display
- Three different concepts:
 - Light sensor eyes
 - Webcam eyes
 - Light sensor array "remote"


Light Sensor Eyes

- Commercially available robots with photo resistors eyes that are programmed to travel toward or away from the light
- Parallax Scribbler
 - Light would need to be shined directly at the robots eyes or above the robot
 - Essentially push or pull the robot in the direction of the light

Light Sensor Eyes cont.

- Parallax Boe-Bot
 - Can be programmed to steer on its own and follow light shined in front of it
 - Operator would shine laser on the ground in front of the robot and guide its path
 - Direct and Indirect control of the laser could be used

Webcam Eyes

- Mount a webcam on top of the robot
- Have the webcam image travel back to a computer
- Programmed in such a way to follow a laser light dot on the ground
- Would require programming experience

Light Sensor Array

- Create a light sensor array that would guide the movement of the robot
- 4 light sensors, each controlling movement in a different direction (left, right, forward, backward)
- The array can be placed on the robot or somewhere else in the display and wirelessly control the robot movement
- If placed on the robot it may be difficult to aim at each sensor if the robot moves a large distance

Design Concept 2 : Satellite Transmission Game

- Piezoelectric materials used in satellites for micropositioning
- Multiple miniature satellite dishes, each equipped with an LED and phototransistor positioned downstream from laser
- LEDs and phototransistors wired to a microcontroller
- Microcontroller lights up an LED on a satellite
- User must aim laser at corresponding phototransistor on the satellite

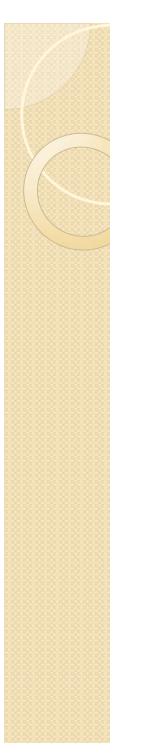
Design Concept 2 Continued

- After hitting photodiode, the LED light goes out and another lights up, process continues
- Must move laser to hit photodiode
- Simulates sending data to various satellites
- Similar to proven, popular "point and shoot" type arcade games
- Can be competitive, either timed or scoring system

Design Concept 3

- Laser is controlled via joystick by user
- A mock satellite dish is positioned down range from the laser
- The movement (pan left/right, tilt up/down) of the dish is controlled by four different photodiodes
- Each respective photodiode induces specific movement in satellite when laser is pointed at it
- Satellite dish is positioned by the user so that the laser can be redirected by the reflective dish to a map

Interaction


- Students apply voltage to piezoceramic, giving laser beam a range of movement
- Controls what side the satellite "adjusts" to
- Student selects by projection of laser which country to "communicate" with

Additional Components

- Pan/tilt motor kit
- 4 Photodiodes
- Mock satellite
- Map/Globe

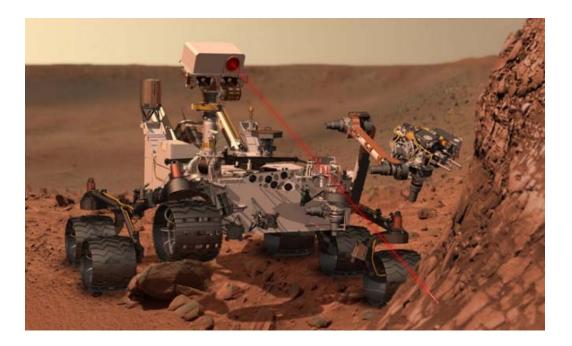
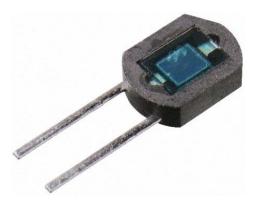


Figure: Pan/Tilt Motor Kit

Concept 4


- Reflective of the Mars rover Curiosity
- Curiosity has a ChemCam laser which fires in brief pulses at rocks on Mars
- This idea is somewhat represented in this design

Components

- Laser
- 6 photodiodes
- Small immobile robot "Curiosity"
- 2 piezoceramics

Description

- Fixed laser turned on and aimed towards top of case
- It hits mirror and beam sent downward
- Laser beam then hits Curiosity's "ChemCam" which is composed of 2 piezoceramics covered in reflective material
- Beam then projected onto a Mars wall with photodoides (or Mars rocks)
- When a photodiode is hit by the laser, a corresponding screen with information comes on

Interaction

- Students apply voltage to piezoceramics on "ChemCam" allowing the laser to be projected onto wall
- Control the laser's aim in hitting the different rocks (photodiodes)
- Can include information about smart materials or Mars exploration on activated screens

Decision Matrix

		Concept I: Laser Manipulated Robot		Concept 2: Satellite Transmission Game		Concept 3: Laser Activated Satellite Control		Concept 4: Mars Curiosity Rover Chem-cam	
Specifications	Weight	Rating	Score	Rating	Score	Rating	Score	Rating	Score
Estimated Cost	25%	3	0.75	4	I	4	I	2	0.5
Applicability to the Learning Center's educational program	40%	3	1.2	4	1.6	5	2	3	1.2
Educational Value	20%	3	0.6	3	0.6	3	0.6	4	0.8
Entertaining	۱5%	4	0.6	4	0.6	4	0.6	3	0.45
Total	100%		3.15		3.8		4.2		2.95

Conclusion

- After getting your input on a design, we will work on finalizing each part of the selected design
- We will then form a comprehensive part list and costs, then get started on purchasing components
- After obtaining components, building and testing will commence

References

- "Boe-Bot Robot Information." *Boe-Bot Robot Information*. N.p., n.d. Web. 20 Oct. 2012. http://www.parallax.com/go/boebot>.
- "NASA National Aeronautics and Space Administration." NASA. N.p., n.d. Web. 17 Oct. 2012. http://www.nasa.gov/mission_pages/msl/index.html.
- "Phototransistors Information." On GlobalSpec. N.p., 1999. Web. 20 Oct. 2012. http://www.globalspec.com/learnmore/optoelectronics_fiber_optics/optoelectronics/phototransistors.
- "Scribbler Robot Information." *Scribbler Robot Information*. N.p., 2012. Web. 24 Oct. 2012. http://www.parallax.com/tabid/455/Default.aspx>.
- "Performance High Voltage Power Supply Manufacturer." *EMCO High Voltage Power Supply Manufacturer*. N.p., n.d. Web. 25 Oct. 2012. http://www.emcohighvoltage.com/.
- "MFC." *Macrofiber Composite*. Smart Material, n.d. Web. 22 Oct. 2012. http://www.smart-material.com/MFC-product-main.html.
- "Piezo Actuators to Enable High-resolution Cosmic Dust Analysis." SME Achievements. European Space Agency, n.d. Web. 22 Oct. 2012.
 http://www.esa.int/SPECIALS/SME_Achievements/SEMAADO7BTE_0.html.
- "From the Satellite to the Ground." *Imagine the Universe*. NASA, n.d. Web. 22 Oct. 2012. http://imagine.gsfc.nasa.gov/docs/sats_n_data/sat_to_grnd.html.