Smart Material Museum Exhibit Fall Final Presentation

0

Senior Design Group 13 Glen Ashworth Daniel Roque Isaac Piersall Laura Wainikainen

СЕΝТЕ

Problem Statement

- The goal of this senior design project is to design, build, and test a museum exhibit
- Exhibit must utilize and demonstrate the behavior of a smart material and its applications
- Smart material chosen for this project is the piezoelectric type
- Exhibit must be interactive and entertaining for students
- Final product should be delivered to the museum ready for display

Constraints

- Safe for use for school aged children
- Must be space themed
- Sized appropriately to fit in the Challenger Learning Center
- Budget of \$1500

Design Inspiration

- Piezoelectric materials currently used in satellites today
- Applications include micropositioning and vibration damping of optics, signal sensors, and monitoring support structures
- We will utilize an MFC (macrofiber composite), invented by NASA in 1996

General View of Lobby

General View of Lobby

Arduino provides input signal to amplifiers

Amplifiers power piezoelectric materials Piezoelectric materials bend, reflecting the laser at the proper angle

Balcony View

Light sensors signal fed to the second Arduino

Map View

Laser mounted on pan/tilt servo motors, which move according to the light sensor activated

FLORIDA

airo

Arduino powers the pan and tilt servos which move according to which light sensor is hit by the laser

Output laser is displayed on the map

Piezoelectric Laser Control Module

Calculations

FRONT VIEW

2

Final

Disp.

Tmetal (mm)	2.2	2.2
Voltage(volts)	1500	0
Lin (mm)	100	100
difT (mm)	1.9364	0
Ang_disp (deg)	9.07	0

Initial angle = 45 °

- Ist piezo/mirror assembly
 - Angular displacement ~ 18 °

Calculations cont.

- 2nd piezo/mirror assembly
 - Angular displacement

Projected area

Expected

• rectangular

Actual

- Trapezoidal
- Caused by linear tip displacement

Laser :: $R_{photoresistor}$ decrease :: V_1 decrease :: V_{out} = logic high

Laser Power Circuit x2

Materials

At User Interface:

- Joystick (Analog)
 - Final output of the laser is controlled via user input from joystick
- Arduino
- Two Amplifiers: EMCO High
 Voltage
 - Input: 0-5V
 - Output: 0-1500 V
- Two bending piezoelectric ceramics (MFC)
- Stationary Laser

Materials

At Satellite:

- Light Sensors
 - Photodiode, phototransistor, photo-resistors
- Arduino
 - Output controls pan and tilt servos
- Laser mounted on pan/ tilt kit
 - Laser projected onto map

Safety

- Laser
 - Keep out of people's line of sight
 - Raise height of piezoceramics
- Electrical wiring
 - Enclose it in locked case
- No environmental hazards

Concerns/Roadblocks

- Light sensors being visible
 - LED's around light sensors
 - Webcam
- School children understanding
 - Poster with proper instructions for operation
 - Information about smart materials

Conclusion/Future Plans

Purchase Materials

Testing

- Joystick control
- Pan/Tilt kit
- Laser projection on map

Assembly/ Installation

References

- "NASA Invention of the Year' Controls Noise and Vibration." NASA Spinoff. NASA.gov, n.d. Web. 05 Dec. 2012. <u>http://spinoff.nasa.gov/Spinoff2007/ip_9.html</u>.
- "Performance High Voltage Power Supply Manufacturer." EMCO High Voltage Power Supply Manufacturer. N.p., n.d. Web. 25 Oct. 2012. http://www.emcohighvoltage.com/.
- "ArduinoBoardUno." Arduino.cc. N.p., n.d. Web. 05 Dec. 2012. http://www.arduino.cc/en/Main/arduinoBoardUno>.
- "MFC." Macrofiber Composite. Smart Material, n.d. Web. 17 Nov. 2012.
 http://www.smart-material.com/MFC-product-main.html.
- "Piezo Actuators to Enable High-resolution Cosmic Dust Analysis." SME Achievements. European Space Agency, n.d. Web. 22 Oct. 2012. http://www.esa.int/SPECIALS/SME_Achievements/SEMAADO7BTE_0.html.
- "From the Satellite to the Ground." Imagine the Universe. NASA, n.d. Web. 22 Oct. 2012. http://imagine.gsfc.nasa.gov/docs/sats_n_data/sat_to_grnd.html.
- Turner, Janelle. "'NASA Invention of the Year' Controls Noise and Vibration." 'NASA Invention of the Year' Controls Noise and Vibration. N.p., I May 2011. Web. 06 Dec. 2012.

Bill of Materials

ITEM	DESCRIPTION	QUANTITY	COST	
Piezoelectric	Smart Material Corp	2	Provided by FSU-FAMU	
Material	M8528 PI		COE	
Laser	5 mW Green	2	\$30.00	
Laser/Piezo Stand and baseplate	Machined Aluminum	I	\$50.00	
Microcontroller	Arduino Uno	2	\$59.90	
Amplifier	EMCO-C30	2	Provided by FSU-FAMU COE	
Light Sensors	Large photoresistors	4	\$6.00	
Mirror	Wall-mountable	1	\$29.46	
Joystick	4SJ200-0A-M4-S 2 Axis	1	\$28.00	
Exhibit Case	Acrylic	1	Provided by Sponsor	
Exhibit Stand	Wood		\$50.00	
Pan/Tilt Kit	ROB-10335	1	\$5.95	
Small Servo Motor	ROB-09065	2	\$17.90	
Target	Craft Materials	-	\$10.00	
Mock Satellite	Craft Materials	I	\$25	

Total Cost: \$312.21

Gantt Chart

	Decem	ıber	January			February				
Week	2-Dec	9-Dec	6-Jan	13-Jan	20-Jan	27-Jan	3-Feb	10-Feb	17-Feb	24-Feb
Finalize Bill of Materials										
Restated Scopes										
Purchasing										
Assembly										
Prototype Testing										
Installation										

MFC: Macro-Fiber Composites

- Rectangular piezoceramic rods between layers of adhesive film containing tiny electrodes
- Transfer voltage to and from ribbon shaped robs
- Advantages:
 - Higher performance, flexibility, and durability

Concept I: Laser Manipulated Robot

- Use direct/indirect laser control to manipulate the movement of a robot.
- Theme: Curiosity Mars Rover
- Operator guides the rover through a maze set up in the display

Concept 2: Laser Activated Satellite Control

- A mock satellite dish is positioned down range from the laser
- The movement (pan left/right, tilt up/down) of the dish is controlled by four different photodiodes
- Each respective photodiode induces specific movement in satellite when laser is pointed at it
- Satellite dish is positioned by the user so that the laser can be redirected by the reflective dish to a map

Concept 3: Mars Curiosity Rover Chem-Cam

- Fixed laser turned on and aimed towards top of case
- It hits mirror and beam sent downward
- Laser beam then hits Curiosity's "ChemCam" which is composed of 2 piezoceramics covered in reflective material
- Beam then projected onto a Mars wall with photodoides (or Mars rocks)

Decision Matrix

		Concept 1: Laser Manipulated Robot		Concept 2: Laser Activated Satellite Control		Concept 3: Mars Curiosity Rover Chem-Cam	
Specifications	Weight	Rating	Score	Rating	Score	Rating	Score
Estimated Cost	25%	3	0.75	4	1	2	0.5
Applicability to the Learning Center's educational program	40%	3	1.2	5	2	3	1.2
Educational Value	20%	3	0.6	3	0.6	4	0.8
Entertaining	15%	4	0.6	4	0.6	3	0.45
Total	100%		3.15		4.2		2.95

User Input (Joystick control) Joystick microswitches turn on/off

Target laser is switched on by the Arduino

Arduino provides input signal to amplifiers Amplifiers power piezoelectric materials Piezoelectric materials bend, reflecting the laser at the proper angle

Arduino reads

microswitches

Laser hits target light sensors

Light sensors signal fed to a second Arduino Arduino powers the pan and tilt servos which move according to which light sensor is hit by the laser

Output laser is displayed on the map

Joystick Sensor x2

