Smart Material Museum Exhibit Interim Design Review

0

Senior Design Group 13 Glen Ashworth Daniel Roque Isaac Piersall Laura Wainikainen

- Materials with a property that can be controlled by an outside source such as stress, temperature, or electric and magnetic charge
- Piezoelectric materials: can produce a voltage if bent or altered and conversely the material will bend and produce a mechanical stress when a voltage is applied to it

- Piezoceramics are currently used in adjustable antennas for satellite communications
- Antenna with piezoceramic components is able to bend slightly when provided with voltage
- Piezoceramics can change the reflector shape and this allows for an improvement of signal quality while the satellite is in orbit

Problem Statement

- The goal of this senior design project is to design, build, and test a museum exhibit
- Exhibit must utilize and demonstrate the behavior of a smart material and its applications
- Smart material chosen for this project is the piezoelectric type
- Exhibit must be interactive and entertaining for students
- Final product should be delivered to the museum ready for display

Constraints

- Safe for use for school aged children
- Must be space themed
- Sized appropriately to fit in the Challenger Learning Center
- Budget of \$1500

Laser and Motion

- Class 3A Laser (laser pointer)
 - May need addition heat sink
- Indirect motion
 - Piezos move mirrors
 - Laser stationary

MFC Movement and Calculations

Smart Material Corp.

• Macro Fiber Composite (MFC)

- MFC PI type (d33 effect)
 - Elongator
- Max operating voltage
 - -500 to 1500 V

Code provided by: Mike Hayes

>> laminar_actuator_tip_disp

Tmetal	2.2 mm
Voltage	1500 volts
Lin	2.15 inches
difT	1.9364 mm

Amplifiers

EMCO High Voltage

- C series- I watt amplifiers
 - Needs a I watt II.5-I6VDC power adapter
 - Input 0-5 V
 - Output 0-1500V

Misc. Parts

- Light sensors
 - Photodiode, phototransistor, photo-resistors
- User interface
 - Joystick (Analog)
 - Arduino
 - Amplifiers

All design concepts utilize....

- Two bending piezoelectric ceramics
- Two amplifiers
- Joystick
- Laser

- Final output of the laser is controlled via user input from joystick
- Each amplifier and ceramic control one degree of freedom
- Each design concept also requires additional supplies unique to the design.

Concept I: Laser Manipulated Robot

- Use direct/indirect laser control to manipulate the movement of a robot.
- Theme: Curiosity Mars Rover
- Operator guides the rover through a maze set up in the display

Concept 2: Laser Activated Satellite Control

- A mock satellite dish is positioned down range from the laser
- The movement (pan left/right, tilt up/down) of the dish is controlled by four different photodiodes
- Each respective photodiode induces specific movement in satellite when laser is pointed at it
- Satellite dish is positioned by the user so that the laser can be redirected by the reflective dish to a map

Concept 3: Mars Curiosity Rover Chem-Cam

- Fixed laser turned on and aimed towards top of case
- It hits mirror and beam sent downward
- Laser beam then hits Curiosity's "ChemCam" which is composed of 2 piezoceramics covered in reflective material
- Beam then projected onto a Mars wall with photodoides (or Mars rocks)

Decision Matrix

		Concept 1: Laser Manipulated Robot		Concept 2: Laser Activated Satellite Control		Concept 3: Mars Curiosity Rover Chem-Cam	
Specifications	Weight	Rating	Score	Rating	Score	Rating	Score
Estimated Cost	25%	3	0.75	4	1	2	0.5
Applicability to the Learning Center's educational program	40%	3	1.2	5	2	3	1.2
Educational Value	20%	3	0.6	3	0.6	4	0.8
Entertaining	15%	4	0.6	4	0.6	3	0.45
Total	100%		3.15		4.2		2.95

General View of Lobby

Balcony View

Map View

Satellite • Majority of t

- Majority of the satellite structure is for aesthetics
- Mounted on/near railing
- The outside will be stationary
- Cheap materials
- Laser mounted on pan/tilt kit mounted in hollow opening

Schedule

S.D. Project Gantt Chart									
ID	0	Task Name	Duration	Start	Finish	Predecessors			
1		Fall 2012	61 days	Thu 9/13/12	Thu 12/6/12				
2	HE	Milestone #1 Code of Conduct	6 days	Thu 9/13/12	Thu 9/20/12				
3		Milestone #2 Needs A nalysis	5 days	Frl 9/21/12	Thu 9/27/12				
4	HE	Project Scope	5 days	FrI9/21/12	Thu 9/27/12				
5	HE	Problem Statement	5 days	FrI9/21/12	Thu 9/27/12				
6	H	Justification/Background	5 days	FrI9/21/12	Thu 9/27/12				
7	HE	Objectives (Measu rable Criteria)	5 days	FrI 9/21/12	Thu 9/27/12				
8	HE	Constraints	5 days	FrI9/21/12	Thu 9/27/12				
9	HE	Milestone #3 Project Plan/ Product Spec	10 days	FrI9/28/12	Thu 10/11/12				
10	HT	Gantt Chart	10 days	FrI 9/28/12	Thu 10/11/12				
11	11	Discussion of Teams Eval. And Selection of	1 day	Thu 10/18/12	Thu 10/18/12				
12		Milestone #4 Concept Generation/Selection	10 days	Frl 10/12/12	Thu 10/25/12	10			
13	HE	Functional Analysis	10 days	Frl 10/12/12	Thu 10/25/12				
14		Individual Tasks and Assignments	10 days	Frl 10/12/12	Thu 10/25/12				
15	HE	Design Concepts Development	10 days	FrI 10/12/12	Thu 10/25/12				
16	HE	Concept Evaluation and Selection	10 days	FrI 10/12/12	Thu 10/25/12				
17	311	Product Specifications for hardwan	10 days	Frl 10/12/12	Thu 10/25/12				
18	HE	Performance and Functional Spec	10 days	FrI 10/12/12	Thu 10/25/12				
19	H	Midterm Presentation I	0 days	Thu 10/25/12	Thu 10/25/12				
20	HT	Team Evaluation Report	5 days	Frl 10/26/12	Thu 11/1/12				
21	HT	Presentation to MEAC	0 days	Thu 11/8/12	Thu 11/8/12				
22	HE	Interim Design Review	11 days	Thu 11/1/12	Thu 11/15/12				
23	H	Midterm Preentation II	0 days	Thu 11/15/12	Thu 11/15/12				
24		interim Design Deliverables	11 days	Thu 11/15/12	Thu 11/29/12				
25	HE	Bill of Material	11 days	Thu 11/15/12	Thu 11/29/12				
26	HT	Work Orders	11 days	Thu 11/15/12	Thu 11/29/12				
27	HT	Parts	11 days	Thu 11/15/12	Thu 11/29/12				
28	HE	Machining	11 days	Thu 11/15/12	Thu 11/29/12				
29	HT	Milestone #5 Deliverable Package Report	5 days	Frl 11/30/12	Thu 12/6/12				
30	HT	Final Design Presentation	0 days	Thu 12/6/12	Thu 12/6/12				

Schedule

Potential Roadblocks/Concerns

Photodiodes being visible
 -binocular
 -webcam

- Safety
 - laser
 - electrical wiring
- Kids understanding "smart material"

Conclusion

- Part selection and purchasing is currently underway
- Another meeting with Challenger Learning Center before the end of the semester to update our progress
- After obtaining components, building and testing will commence

References

- "Boe-Bot Robot Information." *Boe-Bot Robot Information*. N.p., n.d. Web. 20 Oct. 2012. http://www.parallax.com/go/boebot>.
- "NASA National Aeronautics and Space Administration." NASA. N.p., n.d. Web. 17 Oct. 2012. http://www.nasa.gov/mission_pages/msl/index.html.
- "Phototransistors Information." On GlobalSpec. N.p., 1999. Web. 20 Oct. 2012.
 http://www.globalspec.com/learnmore/optoelectronics_fiber_optics/optoelectronics/phototransistors.
- "Scribbler Robot Information." Scribbler Robot Information. N.p., 2012. Web. 24 Oct. 2012. http://www.parallax.com/tabid/455/Default.aspx>.
- "Performance High Voltage Power Supply Manufacturer." *EMCO High Voltage Power Supply Manufacturer*. N.p., n.d. Web. 25 Oct. 2012. http://www.emcohighvoltage.com/.
- "MFC." *Macrofiber Composite*. Smart Material, n.d. Web. 22 Oct. 2012. http://www.smart-material.com/MFC-product-main.html.
- "Piezo Actuators to Enable High-resolution Cosmic Dust Analysis." SME Achievements. European Space Agency, n.d. Web. 22 Oct. 2012.
 http://www.esa.int/SPECIALS/SME_Achievements/SEMAADO7BTE_0.html.
- "From the Satellite to the Ground." *Imagine the Universe*. NASA, n.d. Web. 22 Oct. 2012. http://imagine.gsfc.nasa.gov/docs/sats_n_data/sat_to_grnd.html.