

Final Presentation

FCAAP: AIAA Design Build Fly

Instructor

Dr. Kamal Amin

Project Advisors

Dr. Farrukh Alvi

Dr. Chiang Shih

Sponsor

FCAAP

TEAM 16: Lee Becker – Jordan Benezra – Terry Thomas – Will Watts [4/18/13]

Presentation Outline

Project Overview

- AIAA "Design Build Fly"
- Competition Basics
- Specific Requirements

Design

- Aircraft Components
- Sub Assemblies
- Propulsion Circuit
- Electronics

Build

- Construction Processes
- Completed Plane

<u>Fly</u>

Final Results

Project Overview

OBJECTIVES:

- Design and build an electrically powered
 RC aircraft
- Complete 3 flight missions directed by the AIAA Design/Build/Fly competition
- Create a precise written report documenting the process (scored along with flight missions)

Competition Basics

Mission 1:

- Take-off within the prescribed area
- Maximum number of complete laps within a 4 minute flight time
- Mission score: M1= 2 * (N_Laps_Flown/Max_N_Laps_Flown)

Competition Basics

Mission 2:

- Take-off within the prescribed area
- 3 Lap internal-stores flight
- Internal Store MiniMax Rocket

Mission score:

M2= 4 * (#_Stores_Flown/Max_#_Stores_Flown)

Competition Basics

Mission 3:

- Take-off within the prescribed area
- 3 lap mixed-stores (internal & external) flight
- Mission score: M3= 6 * (Fastest_Time_Flown/Team_Time_Flown)

Specific Requirements

Competition Restrictions:

- Propulsion circuit battery pack must weigh ≤ 1.5 lbs.
- Batteries must be NiMH or NiCad
- Current draw limited to 20 Amps by inline fuse

Challenge:

- Power = Voltage*Amperage
- Available components utilize low voltage and high amperage
- 20 amp limit forces competitors to run excessive voltage to reach desired power level

Specific Requirements

Weight Vs. Power Concerns

- Internal/External Rockets + Battery Packs = 4.5 lbs.
- Max Power available ≈ 500 Watts
- General Power Rule: 220 Watts per pound ——> Allows only 2.4 lbs.!
- *** This DOES NOT include the additional weight of the aircraft itself

Aircraft Underpowered

- Tasked with designing/building a plane that is vastly underpowered
- Oversized due to the necessity of internal rocket storage
- While also high-strength to support internal/external rocket weights

Aircraft Components

Wing Tail

- Max Coefficient of lift
- Extremely light weight construction
- High material strength

Must allow for external store attachment

Fuselage

- Must be large enough to contain internal stores in addition to necessary flight components
- Acts as skeleton supporting entire plane, must be high strength

Defines flight stability and control

Wing Selection

Monoplane:

- Stable flight characteristics
- Exterior storage capacity
- Less complexity

Airfoil	Max Cl	Stall Angle (deg)	Max Aerodynamic Efficiency (CI/Cd)	α at Max Eff (deg)	Cl at α
NACA 4412	1.55	12.00	70.60	6.00	1.20
NACA 65-418	1.45	9.00	48.30	6.00	0.97
Eppler 422	1.474	17.00	85.29	6.00	1.45
DAE 11	1.78	15.00	56.00	10.00	1.56

Fuselage Selection

Single Boom:

- Largest interior storage capacity
- Less overall drag and weight
- Less design complexity

Figure of Merit	Weighting Factor	Double Boom	Single Boom	Blended Body
Weight	0.40	1	3	4
Drag	0.20	2	4	5
Durability	0.10	3	4	5
Storage Capacity	0.30	5	4	1
Total	1.00	2.6	3.6	3.4

Single Boom

Blended Body

Double Boom

Tail Selection

Conventional Tail:

- Stable flight characteristics
- Less design complexity

Figure of Merit	Weighting Factor	Conventional	V-Tail	Twin Tail	T-Tail
Weight	0.15	3	4	3	3
Drag	0.20	4	5	3	3
Stability	0.35	5	2	3	3
Maneuverability	0.20	5	2	4	4
Manufacturability	0.10	4	2	3	3
Total	1.00	4.40	2.90	3.20	3.20

Propeller Configuration

Tractor:

- Efficient propulsion
- Increased controllability
- Better performance

Pusher - Puller

Pusher

Ducted Fan

Overall Aircraft Configuration

Wing - Eppler 422

- High lift at low Reynolds numbers
- Low drag at cruising state

Wing Area (S)	806.4 in ²
Span (b)	77.77 in
Chord (c)	10.37 in
Aspect Ratio (AR)	7.5
Minimum Takeoff Speed	21.387 mph

Airfoil Profile

Fuselage

- Constructed with combination of high strength / light weight materials
- Carbon Composite
 Density: 1.6 g/cm³
- Bass Wood
 Density: 0.3 g/cm³

Tail – NACA 0008

Low drag at high coefficients of lift

0.8 0.6 0.4 0.2 0.2 0.2 0.4 0.4 0.6 0.4 0.6 0.7 0.8 0 0.9 0.05 0.1 0.15 0.2 Coefficient of Drag (C_d)

Vertical Span	10.239 inches
Vertical Chord	7.9 inches
Horizontal Span	23.76 inches
Horizontal Chord	7.9 inches
Moment Arm	31.107 inches

Internal Store Attachment

Light weight plastic tubing

- Single piece design eliminates complicated attachment mechanisms
- Provides secure grasp on outer surface of Minimax internal stores
- Prevents unwanted axial motion during flight

External Store Attachment

Carbon Composite Extensions

- Permanently affixed to primary and secondary main wing spars
- Provide additional wing reinforcement
- Simple tie-strap connection between composite and external rocket

Aircraft Detailed Design - Propulsion

Battery Requirements:

- High discharge rate
- Eliminates many smaller, higher voltage cell types

Battery Selection:

- 20 A limit requires maximum voltage possible
- Optimal cell type:

Size -2/3 A

Volt - 1.2 V

Capacity - 1500 mAh

- Pack will yield 26.4 Volts at just under 1.5 lbs.
- Max Power = 528 Watts

Figures of Merit	Supercharge Orion 1500	Speedpack 2400	Traxxis Power Cell 6 Cell 1500	Speedpack 1800	Individual Cell Elite 1500
Cell Voltage	7.2 V	7.2V	7.2V	7.2V	1.2V
Amp-Hours	1600 mAh	2400 mAh	1500 mAh	1800mAh	1500mAh
Weight	8.6 oz	12 oz	8 oz	10.4 oz	0.81 oz
Dimensions (in ³)	4.4 x 2.2 x 0.9	7.7 x 2 x 1	5.6 x 3 x 1	7.6 x 2.1 x 1.2	1.13 x 0.66 x 0.66
Cost	\$21.15	\$20.81	\$11.09	\$11.68	\$2.75

<u>Aircraft Detailed Design – Propulsion</u>

Velocity and Thrust Requirements

- Wing Loading = 25.73 oz/ft²
- Stall Speed = 25.36 mph
- Max Speed ≈ 65 mph
- Thrust must be > ½ Total Aircraft Weight

Effect of Thrust on Current Draw

- Increased thrust = Larger pitch = Higher Amps
- Motor / Prop combinations providing necessary thrust draw too much amperage
- Competition has 20 Amp limit

Solution

- 2.5:1 Gear box
- Provides mechanical advantage to turn prop with less added torque on motor

Amperage

<u>Aircraft Detailed Design – Propulsion</u>

E-Flite Power 15 Brushless

Performance

Thrust: 76 oz.

Max Velocity: 60 mph

Amperage Draw: 18.8 A

Full Throttle Duration: 5+ min

APC Prop: Dia-13in Pitch-8in

Thrust Ratio

Mission 1: 1.583

Mission 2: 1.357

Mission 3: 1.055

<u>Aircraft Design – Control System Electronics</u>

<u>Build Process – Fuselage</u>

Fuselage

- Bass Wood Bottom Plate
 6.0 in. (W) x 18.0 in (L) x 0.125 in. (T)
- Magnetic Connection Points

- Carbon Composite Strips
 0.5 in. x 0.125 in.
- Carbon Fiber Tube
 0.75 in. (dia) x 30.0 in. (L)
- Bass Wood Top Plate
 6.0 in. (W) x 18.0 in (L) x 0.125 in. (T)

Build Process – Internal/External Assemblies

External

Internal

Build Process – Main Wing

Airfoil: Eppler 422

- 78 in. Wingspan
- 806 in²

Build Process – Tail

Airfoil: NACA 0008

• 10.24 in. Vertical Span

• 23.76 in. Horiz. Span

• 7.90 in. Chord

Build Process - Motor Mount

2.5 : 1 Gear Ratio

- Pinion 16 tooth
 (Acetal/Stainless Hub)
- Output 40 tooth (Acetal/Stainless Hub)

Lexan Plate

- Mounts E-flite Power 15
 Motor
- Houses 5mm prop shaft through press-fit bearings
- Attachment point for nose gear

Build Process – Landing Gear

Nose Gear

- 5/32 in. spring steel
- 1 in² tube machined to house rod
- 5/32 in. collars allow for swivel

Main Gear

- 5/32 in. spring steel
- Mounts to fuselage rear
- Slide lock into tail tube

78 in. →

<u>Budget</u>

Category	<u>Item</u>	Cost	<u>Total</u>
			_
Electronics			\$410.00
	Motors	\$110.00	
	Servos	\$80.00	
	Wires	\$20.00	
	Batteries	\$120.00	
	ESC	\$80.00	
Construction			\$445.00
	Wood	\$100.00	
	Strips	\$108.00	
	Tube	\$54.00	
	Monokote	\$39.00	
	Spars	\$96.00	
	Adhesives	\$48.00	
<u>Tools</u>			\$77.00
	Dremmel	\$55.00	
	Heat Gun	\$22.00	
Misc			\$294.00
	Rockets	\$143.00	
	Gears	\$60.00	
	Shaft	\$30.00	
	Hardware	\$40.00	
	Landing Gear	\$21.00	
	<u>Total Fun</u>	\$1,226.00	
	<u>Initial B</u>	\$1,500.00	

Schedule

Flight Results

Failure Analysis

Questions

