

# Team #2: Solar Car Project Proposal

COE Advisors: ECE Department • Dr. Simon Foo • Dr. Jim Zheng • Dr. Mike Frank ME Department • Dr. Pat Hollis • Dr. Kamal Amin

Team Members: Matthew Bosworth – EE Christopher Dresner – EE Ahmad Farhat – EE Daniel Green – ME Joseph Petit-Homme – ME Thierry Kayiranga – EE Clay Norrbin - ME

Matthew Bosworth



# The Team

Matthew Bosworth Project Manager and EE Lead

Christopher Dresner EE Business Admin.

Ahmad Farhat EE Finance Manager

Thierry Kayiranga Secretary Clay Norrbin ME Lead

Daniel Green ME Business Admin

Joseph Petit-Homme ME Finance Manager



Matthew Bosworth

# Introduction

## **Problem Statement**

- This 2 year project consists of redesigning, building and testing a car that is ready for the "Shell Eco-Marathon" competition in Summer 2014.
- The car will run completely on batteries and solar power with all necessary safety, chassis size, and weight requirements met.
- Year 1 efforts focus on the energy system and the design and build of the body of the car.

Matthew Bosworth



# **Operating Environment**

- Able to drive a minimum of 6 miles on one battery charge
- Standard North American Climates
- Withstand normal wear with seasonal changes consistent with Tallahassee, FL
- The components will be protected electrically and physically.
- Able to handle up to a 12% grade and the ability to remain still at a 20% graded hill using brakes

Matthew Bosworth



## Intended Use(s) and Intended User(s)

• Uses

- Shell Eco-Marathon Solar-Battery Division in 2014
- Outreach through SES and COE to local schools and businesses
- Framework for new Solar Car Club within SES
- Users
  - Person under 150lbs
  - Person with legal driver's license
  - Person approved by Solar Car Team that is insured



Matthew Bosworth

# Statement of Work

- Project Management
- Year 1

Chassis Design and Simulation
Roll Bar/Hatch/Latch
Battery System
Energy Conversion
Solar Panels
Motor
Year 2 Projections

#### Matthew Bosworth



7

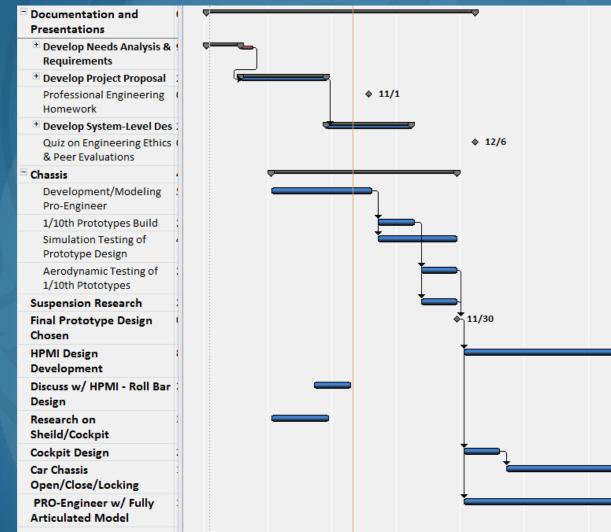
# Schedule

| 8  | Manually Sch     | Professional Engineering Homework      | 0 days  | Thu 11/1/12  | Thu 11/1/12  |          |
|----|------------------|----------------------------------------|---------|--------------|--------------|----------|
| 12 | Manually Sch     | Quiz on Engineering Ethics & Peer Eva  | 0 days  | Thu 12/6/12  | Thu 12/6/12  |          |
| 14 | <br>Auto Schedul | Development/Modeling Pro-Engineer      | 5 wks   | Mon 10/1/12  | Fri 11/2/12  |          |
| 15 | Auto Schedul     | 1/10th Prototypes Build                | 2 wks   | Mon 11/5/12  | Fri 11/16/12 | 14       |
| 16 | Auto Schedul     | Simulation Testing of Prototype Design | 4 wks   | Mon 11/5/12  | Fri 11/30/12 | 14       |
| 17 | Auto Schedul     | Aerodynamic Testing of 1/10th Ptotot   | 2 wks   | Mon 11/19/12 | Fri 11/30/12 | 15       |
| 18 | Auto Schedul     | Suspension Research                    | 2 wks   | Mon 11/19/12 | Fri 11/30/12 | 15       |
| 19 | Auto Schedul     | Final Prototype Design Chosen          | 0 days  | Fri 11/30/12 | Fri 11/30/12 | 17,18    |
| 20 | Auto Schedul     | HPMI Design Development                | 8 wks   | Mon 12/3/12  | Fri 1/25/13  | 19       |
| 21 | <br>Auto Schedul | Discuss w/ HPMI - Roll Bar Design      | 2 wks   | Mon 10/15/12 | Fri 10/26/12 |          |
| 22 | Auto Schedul     | Research on Sheild/Cockpit             | 3 wks   | Mon 10/1/12  | Fri 10/19/12 |          |
| 23 | Auto Schedul     | Cockpit Design                         | 2 wks   | Mon 12/3/12  | Fri 12/14/12 | 19       |
| 24 | Auto Schedul     | Car Chassis Open/Close/Locking         | 12 wks  | Mon 12/17/12 | Fri 3/8/13   | 23       |
| 25 | Auto Schedul     | PRO-Engineer w/ Fully Articulated Mo   | 12 wks  | Mon 12/3/12  | Fri 2/22/13  | 19       |
| 27 | Auto Schedul     | Energy System Simulation Model         | 75 days | Tue 11/27/12 | Mon 3/11/13  | 31,39,46 |
| 30 | <br>Auto Schedul | Research into Manufactoring at COE     | 6 wks   | Mon 10/15/12 | Fri 11/23/12 |          |
| 31 | Manually Sch     | Manufactoring or Purchasing?           | 1 day   | Mon 11/26/12 | Mon 11/26/12 | 30       |
| 32 | Auto Schedul     | Time needed to purchase or manufact    | 6 wks   | Tue 11/27/12 | Mon 1/7/13   | 31       |
| 33 | Auto Schedul     | Protection Design/Purchasing           | 4 wks   | Tue 11/27/12 | Mon 12/24/12 | 31       |
| 34 | Auto Schedul     | Verification of Design                 | 2 wks   | Tue 1/8/13   | Mon 1/21/13  | 32,33    |
| 35 | Auto Schedul     | Build Array w/ Protection              | 4 wks   | Tue 1/22/13  | Mon 2/18/13  | 34       |
| 36 | Auto Schedul     | Energy System Integration              | 2 wks   | Tue 2/19/13  | Mon 3/4/13   | 35       |
| 38 | <br>Auto Schedul | Frequency Output Research              | 3 wks   | Mon 10/15/12 | Fri 11/2/12  |          |
| 39 | Auto Schedul     | Model Development                      | 2 wks   | Mon 11/5/12  | Fri 11/16/12 | 38       |
| 40 | Auto Schedul     | Ordering/Shipping                      | 4 wks   | Mon 11/5/12  | Fri 11/30/12 | 38       |
| 41 | Auto Schedul     | Device Testing under Steady State Con  | 2 wks   | Mon 12/3/12  | Fri 12/14/12 | 40       |
| 42 | Auto Schedul     | Verification of Device                 | 2 wks   | Mon 12/17/12 | Fri 12/28/12 | 41       |

#### Matthew Bosworth



# Schedule


| 43 | Auto Schedul     | Energy System Integration         | 36 days | Mon 12/31/12 | Mon 2/18/13  | 42    |
|----|------------------|-----------------------------------|---------|--------------|--------------|-------|
| 45 | <br>Auto Schedul | Company interactions              | 4 wks   | Mon 10/8/12  | Fri 11/2/12  |       |
| 46 | Auto Schedul     | Model Development                 | 2 wks   | Mon 11/5/12  | Fri 11/16/12 | 45    |
| 47 | Auto Schedul     | Ordering and Shipping             | 4 wks   | Mon 11/5/12  | Fri 11/30/12 | 45    |
| 48 | Auto Schedul     | BMS Testing with DC load bank     | 6 wks   | Mon 12/3/12  | Fri 1/11/13  | 47    |
| 49 | Auto Schedul     | Battery Testing with DC load bank | 6 wks   | Mon 12/3/12  | Fri 1/11/13  | 47    |
| 50 | Auto Schedul     | Verification of Devices           | 2 wks   | Mon 1/14/13  | Fri 1/25/13  | 48,49 |
| 51 | Auto Schedul     | Integration                       | 26 days | Mon 1/28/13  | Mon 3/4/13   | 50    |
|    |                  |                                   |         |              |              |       |

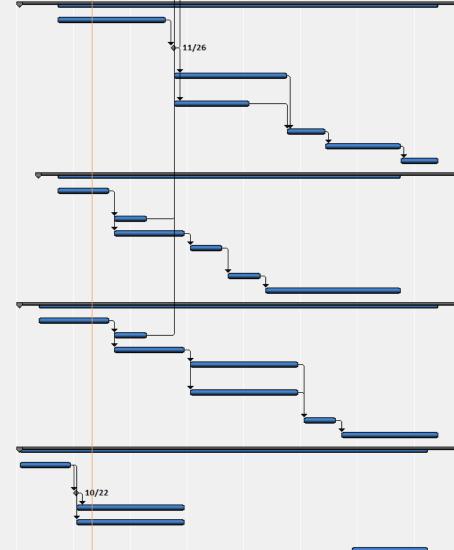
| 53 | Manually Sch | Discussion with Different Companies | 3 wks   | Mon 10/1/12  | Fri 10/19/12 |    |
|----|--------------|-------------------------------------|---------|--------------|--------------|----|
| 54 | Manually Sch | Motor Determination                 | 0 days  | Mon 10/22/12 | Mon 10/22/12 | 53 |
| 55 | Manually Sch | Purchasing and Shipping             | 6 wks   | Mon 10/22/12 | Fri 11/30/12 | 54 |
| 56 | Manually Sch | Simulation Model of Motor           | 6 wks   | Mon 10/22/12 | Fri 11/30/12 | 53 |
| 57 | Manually Sch | Integration                         | 20 days | Fri 2/1/13   | Thu 2/28/13  |    |
|    |              |                                     |         |              |              |    |

#### Matthew Bosworth



# Schedule




#### Matthew Bosworth



# Schedule

#### Solar Panels Research into Manufactoring at COE Manufactoring or Purchasing? Time needed to purchase or manufacture Protection Design/Purchasing Verification of Design Build Array w/ Protection Energy System Integration **HF-Transformer** Frequency Output Research Model Development Ordering/Shipping Device Testing under Steady State Conditions Verification of Device Energy System Integration **Battery System** Company interactions Model Development Ordering and Shipping BMS Testing with DC load bank Battery Testing with DC load bank Verification of Devices Integration Motor Discussion with Different Companies Motor Determination Purchasing and Shipping Simulation Model of Motor

Integration





# Year 1: Budget

| Table 7.1: Personnel Expenses |               |                  |               |                     |                     |  |
|-------------------------------|---------------|------------------|---------------|---------------------|---------------------|--|
| Name                          | Effort(hr/wk) | Base Pay(per hr) | Total(per wk) | Total(per semester) | Entire Project Cost |  |
| Matthew Bosworth              | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Clay Norrbin                  | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Chris Dresner                 | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Joseph Petit-Homme            | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Ahmad Farhat                  | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Ryan Green                    | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
| Thierry Kayiranga             | 12            | \$ 30.00         | \$ 360.00     | \$ 5,760.00         | \$ 11,520.00        |  |
|                               |               |                  |               | total:              | \$ 80,640.00        |  |

| Table 7.2: Equipment Costs |              |  |  |  |
|----------------------------|--------------|--|--|--|
| Materials                  | \$ 1,000.00  |  |  |  |
| Motor Kit                  | \$ 1,000.00  |  |  |  |
| Chassis                    | \$ 4,500.00  |  |  |  |
| Brake                      | \$ 800.00    |  |  |  |
| Cockpit Design             | \$ 1,000.00  |  |  |  |
| MPPT                       | \$ 1,000.00  |  |  |  |
| Battery System             | \$ 2,000.00  |  |  |  |
| Seat                       | \$ 200.00    |  |  |  |
| Wheels                     | \$ 400.00    |  |  |  |
| Suspension                 | \$ 1,000.00  |  |  |  |
| Visor                      | \$ 400.00    |  |  |  |
| Steering                   | \$ 300.00    |  |  |  |
| total:                     | \$ 13,600.00 |  |  |  |



# Year 1: Budget

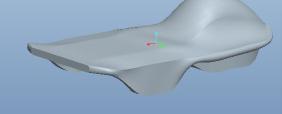
| Table 7.3: Misc Expenses     |             |  |  |  |
|------------------------------|-------------|--|--|--|
| Mechanical Expenses          | Amount      |  |  |  |
| Nuts, Bolts, Screws, Washers | \$ 200.00   |  |  |  |
| Hinges/Latches               | \$ 500.00   |  |  |  |
| Labor for Machining          | \$ 2,000.00 |  |  |  |
| Spare/Extra Parts            | \$ 600.00   |  |  |  |
| subtotal:                    | \$ 3,300.00 |  |  |  |
| Electrical Expenses          | Amount      |  |  |  |
| Ribbon Wire                  | \$ 100.00   |  |  |  |
| Solder                       | \$ 90.00    |  |  |  |
| Solder Irons                 | \$ 150.00   |  |  |  |
| Solder Iron Tips             | \$ 40.00    |  |  |  |
| Wire                         | \$ 150.00   |  |  |  |
| Connector                    | \$ 40.00    |  |  |  |
| PV cell protection parts     | \$ 800.00   |  |  |  |
| subtotal:                    | \$ 1,370.00 |  |  |  |
| total:                       | \$ 4,670.00 |  |  |  |

| Table 7.4: Overall Costs |              |
|--------------------------|--------------|
| Total Parts/Equipment    | \$ 18,270.00 |
| Total Personnel          | \$ 80,640.00 |

Total Estimated Cost w/ Overhead \$145,397.70

Clay Norbbin




# **Mechanical Team Progress**

#### Last Year



#### New Prototype

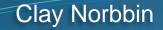






Clay Norbbin




# Mechanical Engineering Change

• Body shape change- smaller size due to less space for solar panels.





 Fully integrated one design instead of three designs- creates less chance of fitment problems





# Suspension

- No restrictions from Shell Eco-marathon.
- Solar cells must not have enough vibration to brake.

#### Designs:



Rigid

#### Carbon Fiber





Clay Norbbin

# **Selection of Suspension**

|             | Coil over | Rigid | Carbon Fiber | Weighting |
|-------------|-----------|-------|--------------|-----------|
| Price       | 5         | 9     | 3            | .2        |
| Performance | 8         | 1     | 7            | .2        |
| Complexity  | 4         | 8     | 5            | .1        |
| Weight      | 2         | 8     | 9            | .3        |
| Size        | 3         | 9     | 8            | .2        |
| Total       | 4.2       | 7     | 6.8          |           |

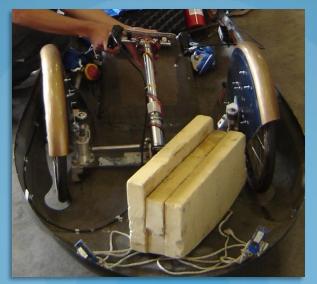


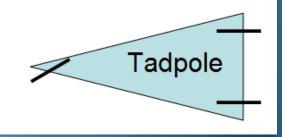


# Steering

Restrictions for turning radius from Shell Eco-marathon

Turning radius of 6m


Designs:


#### **Differenetially Driven**

#### Front Steered

Rear Steered







Clay Norbbin



# **Selection of Steering**

|             | Differential | Front | Rear | Weighting |
|-------------|--------------|-------|------|-----------|
| Price       | 6            | 7     | 5    | .2        |
| Performance | 8            | 6     | 4    | .25       |
| Complexity  | 3            | 7     | 6    | .2        |
| Weight      | 5            | 7     | 8    | .25       |
| Size        | 9            | 5     | 7    | .1        |
| Total       | 5.95         | 6.55  | 5.9  |           |

#### Joseph Petit-Homme



# Chassis – Monocoque

| Decision Matrix              |       |        |             |       |            |  |  |
|------------------------------|-------|--------|-------------|-------|------------|--|--|
| Chassis Structure            | Price | Weight | Performance | Looks | Total      |  |  |
|                              |       |        |             |       |            |  |  |
| Aluminum - Carbon Fiber (CF) | 3     | 2      | 4           | 4     | 3.1        |  |  |
| Honeycomb CF Monocoque       | 3     | 4      | 5           | 4     | 3.85       |  |  |
| Wood - Plastic               | 5     | 3      | 2           | 3     | 3.55       |  |  |
| Weighting                    | 0.4   | 0.25   | 0.25        | 0.1   | Scale: 1-5 |  |  |

#### TECHNICAL SPECIFICATIONS

**Properties of Carbon Fiber** 

Tensile Strength:512 ksiTensile Modulus:33.4 Msi

#### Properties of Honeycomb Core

| Compressive Strength : | 200 psi   |
|------------------------|-----------|
| Compressive Modulus:   | 2175 ps   |
| Tensile Strength:      | 72.5 psi  |
| Density:               | 4.8 lb/ft |
| Shear Strength:        | 70 psi    |
| Shear Modulus:         | 725 psi   |
|                        |           |

#### Lay Up Schedule

3 Layers Plain Weave Carbon Fiber (quasi-isotropic) Polypropylene Structural Honeycomb 3 Layers Plain Weave Carbon Fiber (quasi-isotropic)





#### Joseph Petit-Homme



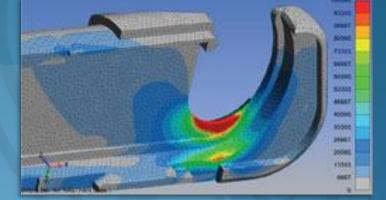
# Comsol

## Structural Mechanics Module

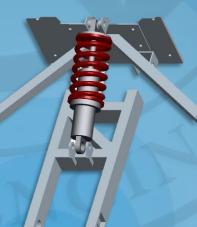
The Structural Mechanics Module is dedicated to the analysis of components and subsystems where it is necessary to evaluate deformations under loads

## • Computational Fluid Mechanic Module

The Computational Fluid Dynamics (CFD) Module is the premier tool in the COMSOL product suite for sophisticated fluid flow simulations. Compressible as well as incompressible flows can be combined with advanced turbulence models and forced and natural convection







## Comsol

Perform Stress Tests

Aerodynamic Simulation



Decision matrix for optimization



**Daniel Green** 



# Roll Bar

- Width extends beyond driver's shoulders
- 5 cm gap above helmet when seated
- Withstand minimum static load of 700 N (~ 70 kg) without deforming Material Choices
- Aluminum
- Chromoly Steel
- Carbon Fiber





Daniel Green

# Material Decision Matrix





| Scale: 1-5        | Weight                                                  | Machinability                                                         | Cost                                                                           | Safety                                                            | Total |
|-------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|
| Aluminum          | Light weight,<br>more material<br>required ( <b>3</b> ) | Easy to machine,<br>more difficult to<br>form than steel ( <b>4</b> ) | Very cheap to<br>purchase and<br>machine ( <b>4</b> )                          | Moderate danger<br>of rapid failure,<br>low strength ( <b>2</b> ) | 2.9   |
| Chromoly<br>Steel | A lighter steel,<br>heaviest<br>material ( <b>3</b> )   | Simple to machine<br>and form ( <b>5</b> )                            | Expensive to<br>purchase and<br>machine ( <b>2</b> )                           | Durable, resilient<br>to impact, good<br>strength ( <b>4</b> )    | 3.4   |
| Carbon<br>Fiber   | Extremely<br>light, lightest<br>material ( <b>5</b> )   | Very difficult and slow to machine and form ( <b>1</b> )              | Relatively<br>inexpensive,<br>machine cost varies<br>with quality ( <b>3</b> ) | Durable, very<br>resilient , highest<br>strength ( <b>5</b> )     | 4.2   |
| Weighting         | 0.3                                                     | 0.1                                                                   | 0.2                                                                            | 0.4                                                               |       |

**Daniel Green** 



# Hatch

 Required Capabilities Must not hinder 10 second vehicle escape Does not shatter into dangerous shards Must have unassisted 180° line of sight Must open from inside and outside vehicle



Daniel Green

## Material Decision Matrix

Material must be lightweight, stiff, strong, with optical clarity

| ALLA O A   | Polycarbonate |  |
|------------|---------------|--|
| shatter fr | Or            |  |
| TILL'RA MA | Acrylic       |  |
| A A        |               |  |

| Scale: 1-5                    | Impact<br>Resistance                                    | Machinability                                                     | Cost                                                     | Clarity                                            | Total |
|-------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------|
| Polycarb-<br>onate<br>(Lexan) | Very high, used in bulletproof glass ( <b>5</b> )       | Easy to work with and form ( <b>5</b> )                           | Substantially<br>more expensive<br>( <b>2</b> )          | Good clarity,<br>risk of<br>yellowing ( <b>4</b> ) | 4.05  |
| Acrylic<br>(Plexiglas)        | Weaker than Lexan<br>by factor of three<br>( <b>2</b> ) | More fragile and<br>likely to break<br>while forming ( <b>3</b> ) | Cheaper than<br>Lexan by factor<br>of three ( <b>5</b> ) | Great clarity,<br>can be<br>polished ( <b>5</b> )  | 3.75  |
| Weighting                     | 0.35                                                    | 0.1                                                               | 0.2                                                      | 0.35                                               |       |

**Daniel Green** 



## Latch System Three existing preferences...

### Spring-Loaded Slam Latch



### **Double-Point Cable Latch**



### Fixed-Rod Multi-Point Latch





Daniel Green

## Final Latch Decision???

Being as there are many various latch types and ways to implement them, the team has yet to arrive at a final decision



Daniel Green



## Hinge System



Simple Removable Pin Hinge
Cheap if purchased
Easy installation
Allows complete removal of hatch
Possible to make in machine shop









Christopher Dresner



# Battery System

- Designed from motor specifications (48V, 800W)
- 24V vs. 48V
  - More efficient at 24V
- Testing

Battery Cells/ Pack performance BMS Charging abilities

- Complete energy system
- Risks

Over Charging Fire

Christopher Dresner



# **Battery Options**

## Li-ion 18650 Cylindrical

| Company |       | Nominal<br>Capacity | Dimensions<br>(H, D) | Weight  |
|---------|-------|---------------------|----------------------|---------|
| Tenergy | 3.7 V | 2.2 Ah              | 2.6 in, 0.7 in       | 0.1 lbs |



## • Lithium Iron Phosphate (LiFePo<sub>4</sub>)

| Company               | Nominal<br>Voltage |       | Dimensions<br>(L x W x H) | Weight   |
|-----------------------|--------------------|-------|---------------------------|----------|
| Tenergy               | 3.2 V              | 20 Ah | 9.8 x 6.9 x 0.3 in        | 1.25 lbs |
| Elite Power Solutions | 3.2 V              | 60 Ah | 5 x 2.6 x 7.1 in          | 5.5 lbs  |





**Christopher Dresner** 



# Li-Ion 18650 Cylindrical

## 24V, 60Ah Battery Pack

- 7 Series, 28 Parallel Combination
- 196 Batteries \$1100
- Weight: 20 lbs
- Individual PCB protection

| Pros                | Cons                                                  |
|---------------------|-------------------------------------------------------|
| Lightweight         | Long, tedious process to connect all the batteries    |
| Small<br>dimensions | Additional BMS needed to prevent against risk of fire |

Multi-Row Cells Cubic or Composite F Type





Christopher Dresner



# Tenergy

Custom made battery pack (\$1500-\$2000)

- 24 3.2V, 20Ah Flat Cell Batteries
- 8 Series, 3 Parallel Combination
  - Weight: 30.2 lbs
- Battery Management System
  - LED gas gauge to show state of charge
- Battery Charger
- Battery pack NOT finalized



**Christopher Dresner** 



# **Elite Power Solutions**

- Cost: \$1300
- 8 GBS 6oAh Li-ion Cells
- Energy Management System
  CPU
  Sensor Boards
  Shunt sensor
  LCD Monitor
  Charger



**Christopher Dresner** 

# **Elite Power Solutions**

## • 8 GBS 60Ah Li-Ion Cells

Voltage
Nominal: 24V, Range: 22.4-29.4V
Capacity
Cell: 60Ah, Pack: 1.54kWh
Dimensions
Weight: 40.6 lbs
10 x 11 x 7.1 in

Sensor Board Strings





Christopher Dresner



# **Elite Power Solutions**

### CPU

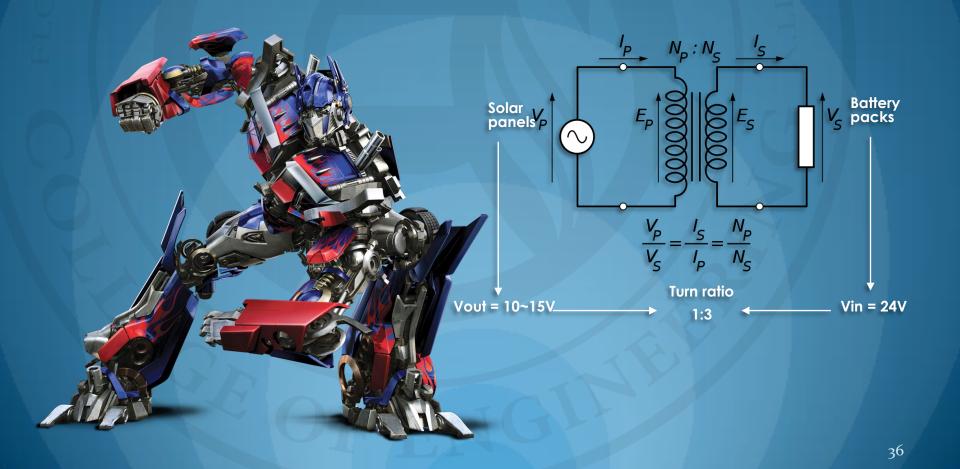
### Provides alarm and video output



Li-Ion Battery Charger

- Input: 110V AC single phase
- Output: 29.4V, 15A DC
- Interfaces with BMS

## LCD Monitor


Pack voltage, pack current, state of charge, individual cell voltage and temperature





Thierry Kayiranga

# Energy Conversion: High Frequency Transformer





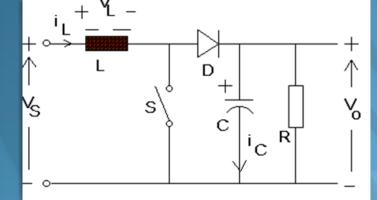
## Thierry Kayiranga Energy Conversion: High Frequency Transformer

| Model No.  | Output Power | Secondary Volts. | Freq. Range      | Price     |
|------------|--------------|------------------|------------------|-----------|
| AL-T250.1  | 250 Watts    | 150 V rms.       | 45Hz to 5000Hz   | \$350.00  |
| AL-T250.2  | 250 Watts    | 150V rms.        | 5KHz to 50KHz    | \$375.00  |
| AL-T250.3  | 250 Watts    | 150V rms.        | 50KHz to 250KHz  | \$400.00  |
| AL-T250.4  | 250 Watts    | 150V rms.        | 250KHz to 800KHz | \$450.00  |
|            |              |                  |                  |           |
| AL-T350.1  | 350 Watts    | 300 V rms.       | 45Hz to 5000Hz   | \$450.00  |
| AL-T350.2  | 350 Watts    | 300V rms.        | 5KHz to 50KHz    | \$475.00  |
| AL-T350.3  | 350 Watts    | 300V rms.        | 50KHz to 250KHz  | \$500.00  |
| AL-T350.4  | 350 Watts    | 300V rms.        | 250KHz to 800KHz | \$550.00  |
|            |              |                  |                  |           |
| AL-T500.1  | 500 Watts    | 1000V rms.       | 100Hz to 1000Hz  | \$550.00  |
| AL-T500.2  | 500 Watts    | 1000V rms.       | 1000Hz to 7000Hz | \$600.00  |
| AL-T500.3  | 500 Watts    | 1000V rms.       | 7KHz to 30KHz    | \$650.00  |
| AL-T500.4  | 500 Watts    | 1000V rms.       | 30KHz to 100KHz  | \$700.00  |
|            |              |                  |                  |           |
| AL-T500.5  | 500 Watts    | 2500V rms.       | 100Hz to 800Hz   | \$800.00  |
| AL-T500.6  | 500 Watts    | 2500V rms.       | 800Hz to 4000Hz  | \$850.00  |
| AL-T500.7  | 500 Watts    | 2500V rms.       | 4KHz to 15KHz    | \$900.00  |
| AL-T500.8  | 500 Watts    | 2500V rms.       | 15KHz to 60KHz   | \$950.00  |
|            |              |                  |                  |           |
| AL-T750.1  | 750 Watts    | 3500V rms.       | 100Hz to 700Hz   | \$1000.00 |
| AL-T750.2  | 750 Watts    | 3500V rms.       | 700Hz to 3000Hz  | \$1050.00 |
| AL-T750.3  | 750 Watts    | 3500V rms.       | 3KHz to 10KHz    | \$1100.00 |
| AL-T750.4  | 750 Watts    | 3500V rms.       | 10KHz to 40KHz   | \$1150.00 |
|            |              |                  |                  |           |
| AL-T1000.1 | 1000 Watts   | 5000V rms.       | 100Hz to 600Hz   | \$1200.00 |
| AL-T1000.2 | 1000 Watts   | 5000V rms.       | 600Hz to 2500Hz  | \$1300.00 |
| AL-T1000.3 | 1000 Watts   | 5000V rms.       | 2.5KHz to 8KHz   | \$1400.00 |
| AL-T1000.4 | 1000 Watts   | 5000V rms.       | 8KHz to 30KHz    | \$1500.00 |
|            |              |                  |                  |           |
| AL-T1000.5 | 1000 Watts   | 7000V rms.       | 2KHz to 10KHz    | \$1700.00 |
| AL-T1000.6 | 1000 Watts   | 7000∨ rms.       | 10KHz to 40KHz   | \$1800.00 |
|            |              |                  |                  |           |
| AL-T1000.7 | 1000 Watts   | 10KV rms.        | 2KHz to 10KHz    | \$1800.00 |
| AL-T1000.8 | 1000 Watts   | 10KV rms.        | 10KHz to 30KHz   | \$1950.00 |

Budget risk: Moderate The transformer is rather expensive but is well within budget. However, a replacement is not an option and would be not in the budget

#### Technical risk: Moderate

The transformer can be made with the values of the turn ratio overestimated or underestimated causing either low or high voltage at the secondary terminal. However, no damage will be done to the batteries


Schedule risk: Low Custom-made transformers delivery could be delayed or lost.



Thierry Kayiranga

# Energy Conversion: Boost Converter





Battery packs Vin = 24V

 $D = 1 - \frac{V_i}{V_o}$ Duty Cycle: 0.5

L = 0.5uH C = 25uH Schedule risk: Low Custom-made converter delivery could be delayed or lost. Technical Risk: Low Passive elements could burn or explosive if driven over specified values

Thierry Kayiranga



## Energy Conversion: Direct Connection from Solar to Battery



Solar panels Vout = 10~15V

# Battery\_Pack

**Battery Packs** 

Connecting the solar panels directly to the terminals of the battery packs. The design charges battery and provides a little current to motor

Technical Risk: Low Proposed design could not work as expected

Thierry Kayiranga

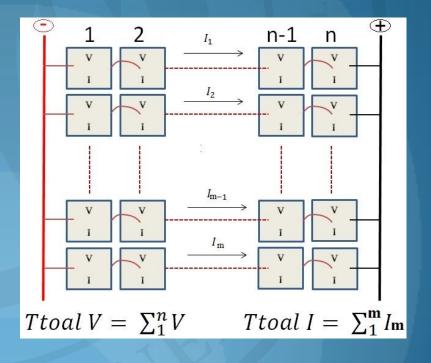


## **Energy Conversion:**

|                               | Pros                                                     | Cons                                                                                                               |
|-------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| High Frequency<br>Transformer | • Efficient                                              | <ul> <li>Heavy</li> <li>Dangerous to operate<br/>(overvoltage case)</li> <li>Expensive</li> </ul>                  |
| Boost converter               | <ul><li>Most efficiency</li><li>Cheap and safe</li></ul> | <ul> <li>Limit of output (Based<br/>on simulation)</li> </ul>                                                      |
| Solar-Battery                 | <ul><li>Efficiency</li><li>Less batteries</li></ul>      | <ul> <li>Little knowledge of<br/>working mechanism (<br/>Need real life testing<br/>for proposed model)</li> </ul> |

Ahmad Farhat




# Solar Panels

## **General Solar Cells Aspects:**

To increase the Voltage the cells must be connected in series.
To increase the Current the cells must be connected in parallel.

## Solar Car Array Design:

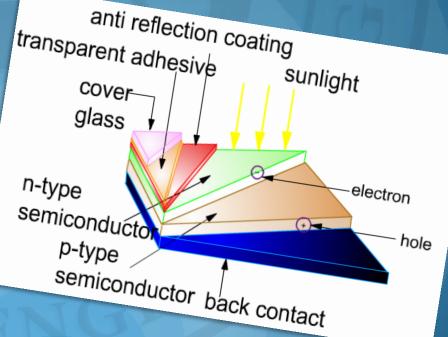
The right amount of voltage and current needed must be determined first.
Solar cells will be only covering 0.17 m<sup>2</sup> of the whole surface area.
Small modules will be build to easily install it at the preferred spots of the car body.



Ahmad Farhat



## Solar Panels – Option 1 Manufacture Solar Cells


•To develop higher efficiency cells compared to market availability.

•One month will been dedicated to research into manufacturing solar panels.

## Risks

Time needed
Manufacturing cost

Access to equipment



Ahmad Farhat



# Solar Panels – Option 2

125x125 Mono-Crystalline Solar Cells

| Voltage (OC) (V)    | 0.6     |
|---------------------|---------|
| Current (sc) (mA)   | 6.8     |
| Loaded Voltage (V)  | 0.53    |
| Loaded Current (mA) | 5.2     |
| Ideal Power (W)     | 4.08    |
| Loaded Power (W)    | 2.756   |
| Efficiency          | 17.6    |
| Panel Size (Inches) | 5x5     |
| Panel Size (mm)     | 125x125 |

- Not Flexible
- High current low voltage
- Cell Price \$1.25
- Delivery time before the new year

• SunPower calls "C60 Bin J"

| Voltage (OC) (V)    | 0.687   |
|---------------------|---------|
| Current (sc) (mA)   | 6.28    |
| Loaded Voltage (V)  | 0.582   |
| Loaded Current (mA) | 5.93    |
| Ideal Power (W)     | 4.31    |
| Loaded Power (W)    | 3.45    |
| Efficiency          | 22.5    |
| Panel Size (Inches) | 5x5     |
| Panel Size (mm)     | 125x125 |

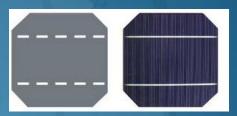
Flexible

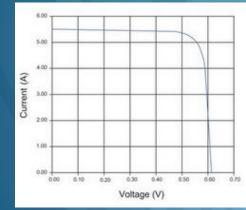
- High current low voltage
- Cell price \$40
- Lead Time up to 9 month

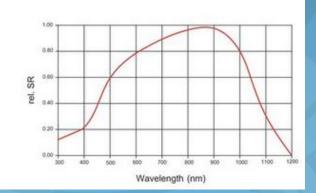
Ahmad Farhat



# Solar Panels – Option 2


## **125x125 Mono-Crystalline Solar Cells**


Can be purchased


•Max number of cells can be used 10

Cutting the cells in half to double the Voltage and Current

Laser Cutting tool will be needed







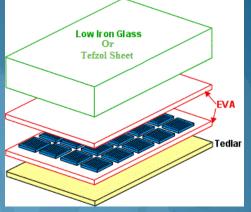
| Voltage (OC) (V)    | 0.6     |
|---------------------|---------|
| Current (sc) (mA)   | 6.8     |
| Loaded Voltage (V)  | 0.53    |
| Loaded Current (mA) | 5.2     |
| Ideal Power (W)     | 4.08    |
| Loaded Power (W)    | 2.756   |
| Efficiency          | 17.6    |
| Panel Size (Inches) | 5x5     |
| Panel Size (mm)     | 125x125 |

Ahmad Farhat



# Solar Panels – Physical Protection

## **Tefzel/ Eva**


Multi-layer protection
Mentor: Ian Winger inventor of 'Solar Sausage'
Risks

Heat Oven will be neededChance of Air bubbles

## AeroMarine 300-21 Epoxy Resin

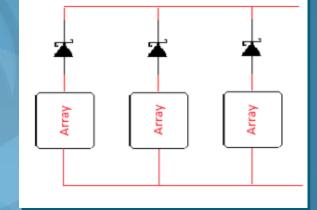
Self Leveling
Excellent gloss and clarity
Risks
Mixing Process is critical
Chance of Air bubbles

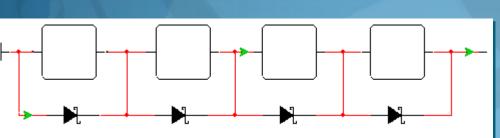






Ahmad Farhat





## Solar Panels – Electrical Protection

The basic function of bypass diodes in solar cells is to protect against hot spot damage when the photovoltaic panel is partially shaded by snow, fallen leaves, or other obstructions



The basic function of blocking diodes in solar arrays is to prevent current flow into array.





bypass diodes

#### blocking diodes

Low voltage Schottky diode will be used low break point voltage "0.2 v" cheap price "\$0.25"

Ahmad Farhat

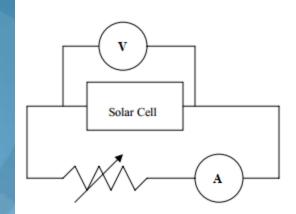


## Solar Panels – Testing

meet

### **Electrical Testing**

- Software Simulation (Matlab, Multisim)
- Sample Cell will be tested to assure that data the factory specs


Measure panel at different irradiation levels

## **Physical Testing**

Test Cells by dropping it from different heights

## **Solar Panel Risks**

- Cells are fragile
- Exceed the allowed surface area
- Wrong encapsulation process
- No access to Heat Oven
- Wrong insulation



#### Matthew Bosworth

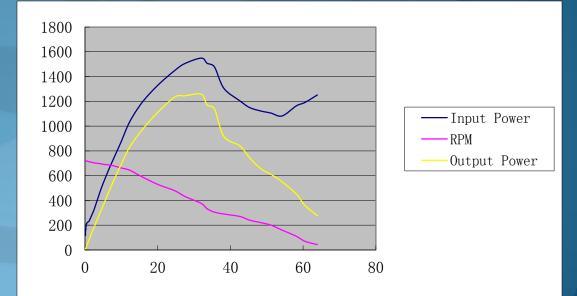




# Motor

|                | Pros                                                                                                                                             | Cons                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LEMCO          | <ul> <li>Moderately Priced</li> <li>Powerful</li> </ul>                                                                                          | <ul> <li>Mechanical Losses<br/>through gears</li> <li>Lower Efficiency</li> </ul>          |
| Nu-Gen         | <ul><li>Most efficiency</li><li>In-wheel</li></ul>                                                                                               | <ul> <li>Made for 96V system</li> <li>Very Expensive</li> <li>9 month lead time</li> </ul> |
| Kelly Controls | <ul> <li>In-wheel, hub</li> <li>48V, 800W can run at 24V.</li> <li>Comes in kit with controller and regen braking</li> <li>&lt;\$1000</li> </ul> | • Size of wheel                                                                            |



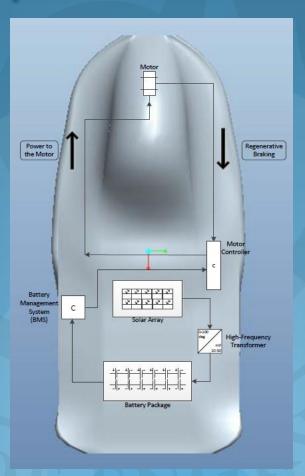

#### Matthew Bosworth







Motor




Torque (Nm)



Matthew Bosworth

# **Top Level Design**



Matthew Bosworth



# **Projected Efforts for Year 2**

- Braking, Horn, Fire Extingusiher
- Energy System Integration/Installation/Testing



## **Risk Assesment**

#### General Uncertainties:

- Incompletely identified requirements or constraints:
  - Interpretation of goals
  - Communication

Unidentified Solutions to Meet Requirements or Capabilities:

- Monetary reasons
- Physical limitations

Technologies or Devices Not Completely Understood or Assessed:

- Research
- Overlooked features or limitations

#### Critical Scheduling Issues:

- Proper planning
- Not enough work