

Team #2: Solar Car System Level Design

COE Advisors: ECE Department •Dr. Simon Foo •Dr. Jim Zheng •Dr. Mike Frank ME Department •Dr. Pat Hollis •Dr. Kamal Amin

Team Members: Matthew Bosworth – EE Christopher Dresner – EE Ahmad Farhat – EE Daniel Green – ME Joseph Petit-Homme – ME Thierry Kayiranga – EE Clay Norrbin - ME

Matthew Bosworth

The Team

Matthew Bosworth Project Manager and EE Lead

Christopher Dresner EE Business Admin.

Ahmad Farhat EE Finance Manager

Thierry Kayiranga Secretary Clay Norrbin ME Lead

Daniel Green ME Business Admin

Joseph Petit-Homme ME Finance Manager

Clay Norrbin

Chassis

Last Year

First Prototype

Clay Norrbin

Smaller Body Shape Due to Less Solar Panels.

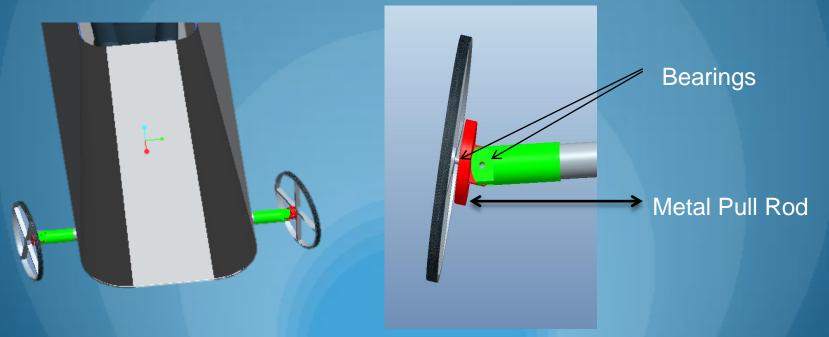
Clay Norrbin

Solar Panel Space

$Area = 0.4m^{2}$

Needed Area = 0.17m^2

1.27m or 4.1ft


.3m or 1ft

Steering

- Front Steered
- Restrictions for turning radius from Shell Eco-marathon
 - Turning radius of 6m

Clay Norrbin

Risks:

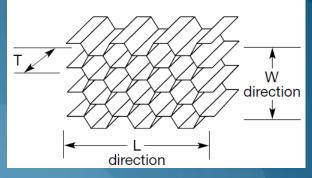
Technical

- Aluminum Honey-Comb might be harder to connect than previously thought.
- The predetermined strength of the car could be weaker than predicted.
- Rigid suspension can cause vibrations and resonance to produce parts to fail
- Steering could be under design requirements

Budget

Carbon Fiber is extremely expensive

Schedule


Chassis manufacturing time

Joseph Petit-Homme

Aluminum Honeycomb Structure:

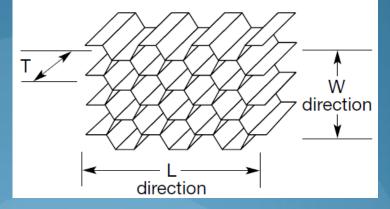
	Solid Metal Sheet	Sandwich Construction	Thicker Sandwich		
		↓ 2t	↓4t		
Relative Stiffness	100	700 7 times more rigid	3700 37 times more rigid!		
Relative Strength	100	350 3.5 times as strong	925 9.25 times as strong!		
Relative Weight	100	103 3% increase in weight	106 6% increase in weight		

Aluminum Honeycomb

- relatively low cost
- best for energy absorption
- greatest strength/weight
- thinnest cell walls
- smooth cell walls
- conductive heat transfer
- electrical shielding
- machinability

Honeycomb stiffens a structure without materially increasing the weight.

Joseph Petit-Homme



Aluminum Honeycomb Structure:

Determining Which Type of Honeycomb

Cost vs. value/performance

- Piece size
- Density
- Strength
 - Compressive
 - Impact
 - Fatigue
- Cell wall thickness
- Flammability/fire retardance
- Electrical conductivity
- Wall surface smoothness
- Cushioning
- Machinability/Formability

Aluminum Commercial Grade (ACG) for 3000 Series Alloy

Hexcel Honeycomb Nominal		Compressive		Crush	Plate Shear				
Designation Density Material pcf	Bare	Stabilized		Strength psi	L Direction		W Direction		
Material – Cell Size	por	Strength psi	Strength psi	Modulus ksi	5	Strength psi	Modulus ksi	Strength psi	Modulus ksi
		typ	typ	typ	typ	typ	typ	typ	typ
ACG – 1/4	4.8	630	660	148	245	365	70	215	38
ACG – 3/8	3.3	340	370	92	120	230	45	130	22
ACG - 1/2	2.3	190	205	40	60	140	28	80	14
ACG – 3/4	1.8	120	130	24	45	100	20	65	11
ACG – 1	1.3	80	85	16p	25	65	14	45	7

Joseph Petit-Homme

Risks: Technical

Description:

- Pro/E and Comsol integration and testing **Probability: Moderate**
- Assistance needed in using different features with the software

Consequences: Moderate

 3D representation and stress testing that will be performed for the car and subsystems will be delayed

Solution:

• Speaking with advisors and others that have an extensive background in using these software.

Joseph Petit-Homme

Risks: Technical

Description:

• Meshing the Aluminum honeycomb to the CF that will be used for the monocoque .

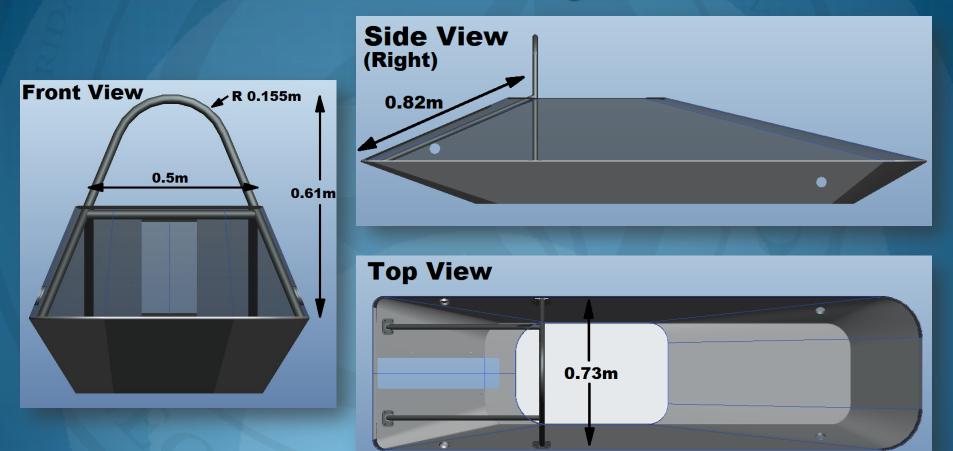
Probability: Low

- Assessment of the materials
- Consequences: High

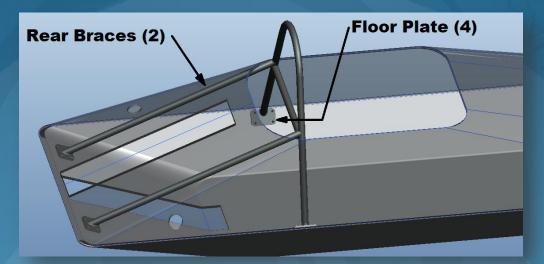
- The monocoque will not stick and chassis will be incomplete and cause a delay in manufacturing time.
 Solution:
- Reach out to experts in this area and consult with them on ways to adhere the materials together or other viable options.

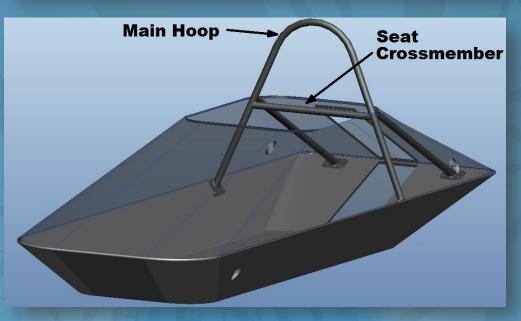
Daniel Green

Roll Bar
Consulted SCCA & NHRA specs
4130N Chromoly steel tubing, 1.25" x 0.065"
0.8226 lbs. per foot
\$5.28 per foot
Easily withstand 70kg without deformation



Daniel Green




Roll Bar Design

Daniel Green

Daniel Green

Hatch

Unnecessary to overall design
Consulted Shell Eco-marathon[®] guide
Article 30: cockpit enclosure optional
Elimination of hatch from final design
Benefits?

Daniel Green

Without Hatch Significant weight decrease Decreased escape time Instant cockpit ventilation Decreased spending Less chance of error Decreased production time Negligible aerodynamic effect

Daniel Green

Risks:

Technical

Possibility of roll bar failure

Budget

• Uncertain of total TIG welding and heat treatment costs

Schedule

• Delay due to roll bar design complications and/or adjustments as vehicle comes together

Christopher Dresner

Battery System 24 V, 20 Ah Battery Pack Estimated that 6.71 Ah needed for race Low size, weight, and cost BMS and Charger

Christopher Dresner

Battery Options

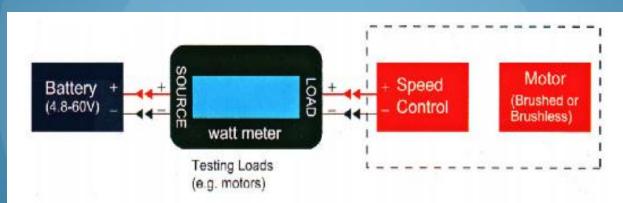
	Elite Power Solutions (LiFeMnPO4)	Electric Rider (LiFePO4)	Electric Rider (LiMnCO2)		
Cost	\$450	\$500	\$900		
Weight (lbs)	13	10	9		
Dimensions (in)	2 x (7 x 3 x 6.5)	6 x 10.25 x 3.5	5.25 x 9.5 x 3.25		
BMS	No (Cell Balancers and SOC meter)	Yes	Yes		
Continuous Current	-	98 A	195 A		
Power	-	2,352 W	4,680 W		

Christopher Dresner

Battery Selection

Scale 1:10	Cost	Performance	Safety	Size	Weight	Total
Elite Power Solutions (LiFeMnPO4)	8	7	6	4	6	6.3
Electric Rider (LiFePO4)	7	7	7	8	8	7.5
Electric Rider (LiMnCO2)	3	9	7	8	8	6.5
Weighting	0.3	0.1	0.1	0.2	0.3	

Christopher Dresner



Turnigy Watt Meter and Power Analyzer

Measures:

0~130A, resolution 0.01A 0~60V, resolution 0.01V 0~6554W, resolution 0.1W 0~65Ah, resolution 0.001Ah 0~6554Wh, resolution 0.1Wh Screen: 16x2, backlit LCD display Size: 85x42x25mm Weight: 82g

Christopher Dresner

Risks:

Technical

• Lithium batteries require a proper battery management system to protect individual cells and the entire battery pack

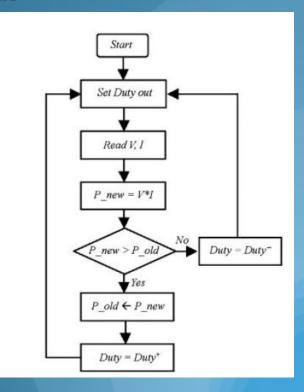
Thierry Kayiranga

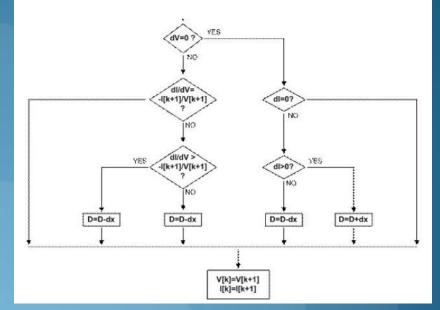
Energy Conversion

Overall view of functionality **MPPT** Algorithm Observe & Perturb Incremental Conductance **Boost Converter** SPV1020 *TPS55340 *TPS61170 *LMR64010 *LMR62014 2M72442

Thierry Kayiranga

Overall view of Functionality

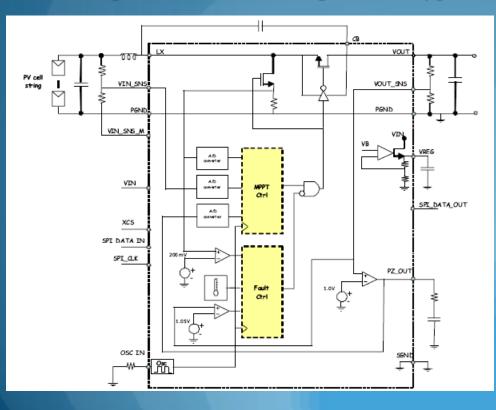

A DC-DC boost converter is used to bring the voltage of the solar array, 12V maximum, to the voltage of the batteries, 24V, in order to act as a dual source during operation of the solar vehicle, and to charge the batteries when the vehicle is not in use. The Boost converter is realized using a power MOSFET and is controlled by the PWM from the microcontroller



Thierry Kayiranga

MPPT Algorithm

Observe & Perturb periodically perturbs and compares the terminal voltage to its previous value

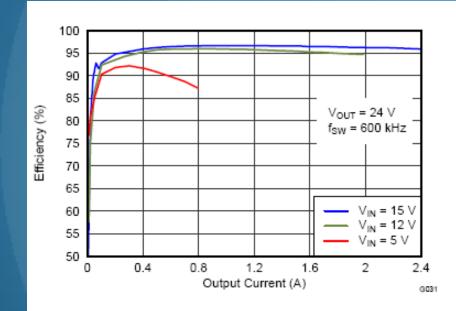

Incremental Conductance compares the derivative of the power curve with respect to voltage to zero.

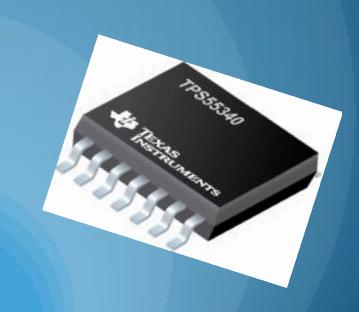
SPV1020

The monolithic 4-phase interleaved DC-DC boost converter from ST Microelectronics is designed to maximize the power generated by photovoltaic panels independent of temperature and amount of solar radiation. **Advantage**: Built-in MPPT algorithm. Type: Perturb and Observe.

PowerSSO-36

$$\frac{R1}{R2} = \frac{V_{inmax}}{1.25} - 1$$
$$\frac{R3}{R4} = \frac{V_{outmax}}{1.02} - 1$$

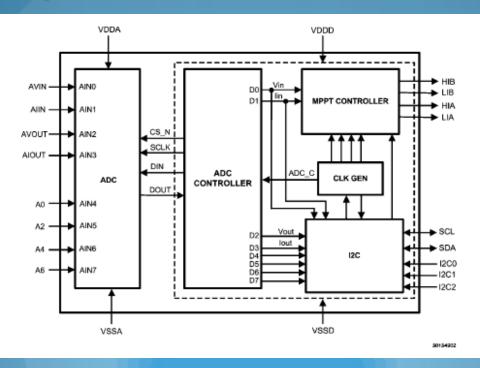

Thierry Kayiranga


Boost Converters TPS55340, TPS61170, LMR64010, LMR62014

Provided by Texas instruments, these boost converters are good for the design and only differ and output voltage capabilities.

Advantages: Very high efficiency > 93%, over-current protection, under-voltage lockout, thermal shutdown, and soft-start programming.

Disadvantage from SPV1020: Not built-in algorithm


TPS55340 Curve

Thierry Kayiranga

MPPT Controller: 2M7442

A Programmable Maximum Power Point Tracker Controller from Texas Instruments, this chip is capable of controlling up to four PWM channels for basic converter and creates a solution for an MPPT configured DC-DC converter with efficiencies up to 99.5%. This controller is also specially made for PV.

Note: Accompanies the TPS55340, TPS61170, LMR64010, and LMR62014

Thierry Kayiranga

Risks:

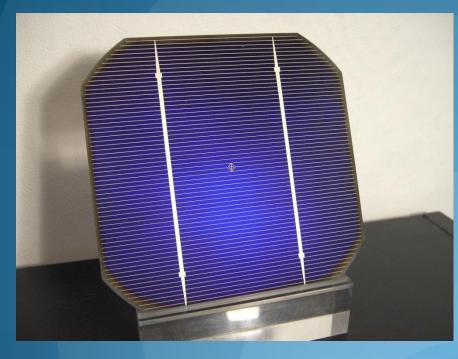
Technical

- Development/Testing of PCB layout
- Pin assignments

Budget

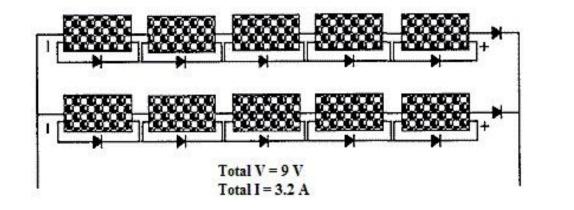
- SPV1020: None
- TPS55340, TPS61170, LMR64010, LMR62014: None
- 2M72442 (MPPT Controller) : None

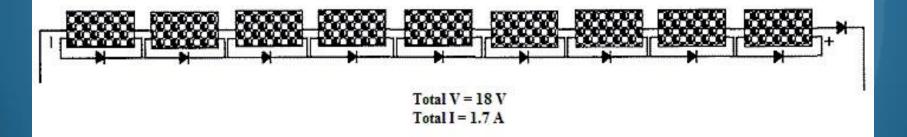
Schedule


• 2M72442 (MPPT Controller) : without this component the vehicle will not be able to use solar energy.

PCB manufacturing/ordering

Ahmad Farhat

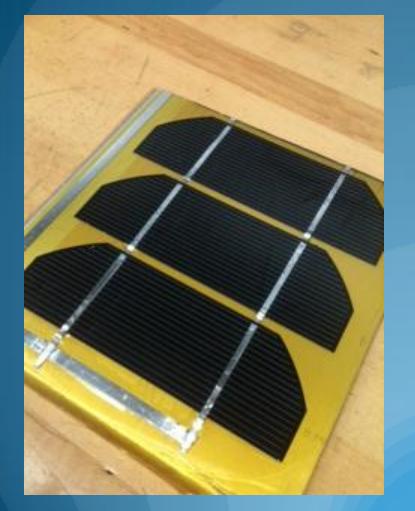

125x125 Mono-Cystalline Solar Cells



Parameters •Voltage (oc): 0.6 V •Current (sc): 6.8 A **Rated Operation** •Voltage Rating: 0.53 V •Current Rating: 5.2 A Module Size •Format: 125 x 125 mm •Diameter: 150mm (Round Chamfers) Weight: 6.7g

Ahmad Farhat

Module Connection Design Circuit Diagram



Ahmad Farhat

Solar Cells Final Specification

Cut each Cell into 3 parts

Final Module Specification

- Voltage (oc): 1.80 V
- Current (sc): 2.27 A
- Rated Operation
- Voltage Rating: 1.59 V
- Current Rating: 1.73 A

Ahmad Farhat

Protection Circuit

Solar Junction Box Specifications

Electrical Features

Current for PV Module: 7A Rated Voltage: DC 1000V Power Capacity: 40-50W Solar panel Touch Protection Class: II

Mechanical Features

Temperature Range: -40°C ~ 85°C Diodes Details: 1pcs Number of terminals: 3 rails Wire Size: 1.5mm2___ 4mm2 or2.5mm2___ 4mm2 Contact Resistance: <5 Ohm Protection Degree: IP65 Flame Class: UL94-V0

Ahmad Farhat

Risks:

Technical

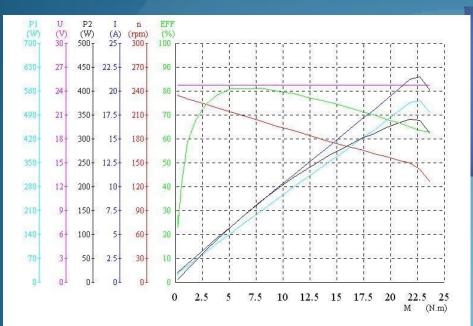
- Wrong encapsulation process which will increase the chance of air bubbles that will effect the cells performance.
- Current flowing back into the solar module, and the partial shading of the solar cells.

Schedule

- Delays in the Solar Junction Box delivery.
- Delays in the modules manufacturing and encapsulation process.
- Damaging existing cells and modules after the manufacturing and encapsulation process.

Matthew Bosworth

Motor Specifications and Selection


Matthew Bosworth

Motor Selection:

Brushless Hub Motor 24V 500W for Front Wheel

Description	U	I	P1	Μ	n	P2	Eff
Description	(V)	(A)	(W)	(N.m)	(rpm)	(W)	(%)
No Load	24.73	0.847	20.96	0.24	235.5	5.91	28.2
Max Efficient	24.74	8.408	208.0	7.99	201.8	168.8	81.1
Max Output Power	24.74	21.23	525.3	21.82	149.3	341.0	64.9
Max Torque	24.69	20.06	495.4	23.69	125.5	311.2	62.8
END	24.69	20.06	495.4	23.69	125.5	311.2	62.8

24"-26" Rear Wheel

- Aluminum AA 6061
- Double Wall
- 12 gauge Steel Spokes
- 7.5-8.1 kg Total Wt.
- Cable length 1.8 m

201.8 rpm = ~15 mph

149.3 rpm = ~12 mph

Matthew Bosworth

Motor Controller Selection:

24V 500W New Controller+24V New LCD Display:

LCD Panel Size: 86*45*15.5mm LCD Display Size: 2.3"

Functions:

- (1). Lamp control
- (2). Power Gauge
- (3). 5-speed level PAS (Off, 60%, 70%, 80%, 90%, 100%)
- (4). Speed Display and Setting (current speed, max speed, average speed)
- (5). Trip Range
- (6). Failure tips

Connections:

Red Wire: Power supply positive pole + Black Wire: Power supply negative pole -Blue Wire: Controller electric key lock wire Yellow Wire: Lamp control Green Wire: Data receive White Wire: Data send

Matthew Bosworth

Risks:

Technical

- Proper wiring of entire energy system
- Programming of motor controller
- Proper connection for throttle and brake pedals

Schedule

- Delays in the Motor/Motor Controller Delivery
- Setting up a testing scenario for the motor system

Matthew Bosworth

Budget

Part	Cost		
Chassis Manufacturing	\$3000.00		
Suspension Manufacturing	\$1000.00		
Steering Manufacturing	\$400.00		
Roll Bar Manufacturing	\$500.00		
Latching/Locking Mechanism	\$50.00		
Solar Cells/Array Manufacturing	0		
Solar Junction Box (x2)	\$25.00		
Boost Converter*	0		
MPPT Controller*	0		
Battery System w/ BMS	\$550.00		
Turnigy Meter/Analyzer	\$50.00		
Hub Motor/Wheel	\$135.00		
Motor Controller	\$80.00		
Throttle/Brake Pedal (x2)	\$138.00		
Total	\$5928.00		

Questions?