Shear Stress Sensor

<u>Group Members</u> Matthew Carmichael Tyler Elsey Luiz Paes

Sponsors Dr. Dickinson, Eglin AFRL Dr. Oates, FAMU & FSU College of Engineering

11/13/2012

OVERVIEW

- Project Scope, Objectives, and Constraints
- Existing Technology
- Technical Approach
- Final Design
 - Programming Needed
 - Parts Needed
- Schedule

Need Statement & Project Scope

Need Statement

 Need in the market for a shear stress sensor that can used outside the lab and decouple shear and normal stress

Project Scope

- Create Testing Apparatus
- Determine if cholesteric crystals are able to measure shear stress

Objectives

- Create a testing apparatus using given baseplate and testing procedure
- Test Liquid Cholesteric Crystals
 - Possible to decouple the pressure and shear stress?
 - Determine the range of forces that can be detected
 - Determine how temperature affects the crystals
- Repeat tests with a polymerized form of cholesteric crystals

Constraints

- Baseplate and testing procedure have been created by a previous group
- Light wavelength sensor must be adjustable
- Stationary white light source with wide wavelength distribution.
- Cholesteric crystals must be able to be heated when needed

Existing Technology

Microelectricalmechanical Systems (MEMS)

Devices that have been fabricated using silicon micromachining technology

- Pros High Resolution
 - High Resolution

- Cons
 - Dirt can get trapped in sensor gaps

Existing Technology

Thin-Oil Film

Oil thickness is measured via interferometry function of the local friction.

- Pros
 - Good accuracy

- Cons
 - Requires two images acquired during a test – Complex

Theory

$\bullet \tau = Force/Area$

Given Parts and Design

Final Design

Final Design

Final Design

LabView

- Correlation to shear load and voltage
- Load cell, servo-motor, spectrometer
- All need to start at the same time record information
- Import data to MATLAB

Simulation - FEM

Strain XY

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & 1-2\nu \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{bmatrix}$$

Purchase Order

McMaster-Carr

Part	Description	Quantity	Unit Price
Teflon Bearing	Sleeve Bearing for 1/4 " shaft diameter, 1/4 " length	1	\$ 3.11 each
Insulation	Ultra-Thin Insulation	1	\$9.03 each
Heat sheet	Ultra-Thin Heat Sheet- 10 Watts per inch ²	1	\$38.90 each
M2.5x45 Screw- 3mm	18-8 SS Metric Pan Head Screw- M 2.5x45- Length 3mm (Pack of 100)	1 pack	\$4.48
M2.5x45 Screw- 10mm	18-8 SS Metric Pan Head Phillips Screw- M 2.5x45- Length 10mm (Pack of 100)	1 pack	\$ 5.21
10-24 Screw- 3/4 in.	316 SS Pan Head Phillips Screw 10-24 Thread- Length 3/4 in. (Pack of 25)	1 pack	\$5.61
		Subtotal	\$66.34

Purchase Order

LED Supply

Part	Description	Quantity	Unit Price
LED	Carclo 20mm Luxeon Rebel- EndorStar Optic	1	\$5.99
Lens	Medium Ripple Lens and Lens holder (19° Illumination Pattern)	1	\$3.00
Lens Color	Neutral- White		
Case	Aluminum LED Housing with 1/2" NPT Thread w/ 6" wire leads	1	\$14.75
		Subtotal	\$23.74

Project Total \$90.08

Bill of Materials

Part- Description	Quantity	Part- Description	Quantity
Linear-Servo Motor (1/2" Motion)	1	LED	1
Load Cell (1/2 N loading)	1	LED Holder	1
Power Supply (Up to 24 Volts)	1	Motor Block- Support for the servo motor	1
Baseplate	1	Heat Pad (10 Watts per inch ²)	1
Glass Slide (3"x1")	3	Insulation	1
Connecting Rod- Connection from load cell to shear block	1	Shear Block Top	1
Legs (9" length)	4	Shear Block Mid	1

Bill of Materials

Part- Description	Quantity	Part- Description	Quantity
Shear Block Bottom- Flush	1	Fiber Optic Sensor- Measures wavelength and intensity	1
Shear Block Bottom- Extrusion	1	Sensor Holder Pin	1
Shear Block Bottom- U-shape	1	M2.5x45 -3mm Screw	6
Support Bracket- Supports the connecting rod with the teflon bearing	1	M2.5x45 - 10mm Screw	6
Measurement Circle- Displays increments in degrees	1	10-24 -3/4" Screw	6
Sensor Holder	1	Teflon Bearing- Reduces the friction in the support and connecting rod	1
Threaded Sensor Holder Pin	1		

Schedule

- October- Complete apparatus design
- November- Machine parts & program LabView
- December- Order polymer before break
- January- Test static shear cases
- February- Test dynamic shear cases
- March- Analysis of data and research possible applications of the sensor
- April- Overflow

Summary

- Apparatus design is complete
- Machine shop is machining parts
- Parts have been ordered and received
- Programming will begin this month
- Testing will commence once programming and parts are completed

Questions/Comments

