Shear Stress Sensor Using Cholesteric Crystals

Group #3

<u>Group Members</u> Matthew Carmichael, FSU Tyler Elsey, FSU Luiz Paes, UNIFEI

> Graduate Assistant Matthew Worden

<u>Sponsors</u> Dr. Dickinson, Eglin AFRL Dr. Oates, FAMU & FSU COE

12/6/2012 eng.fsu.edu/me/senior_design/2013/team3

OVERVIEW

- Project Scope and Objectives
- Constraints
- Existing Technology
- Theory
- Concepts
- Decision Matrix
- Final Design
- Programming Needed
- Cost Analysis
- Schedule

Need Statement & Project Scope

Need Statement

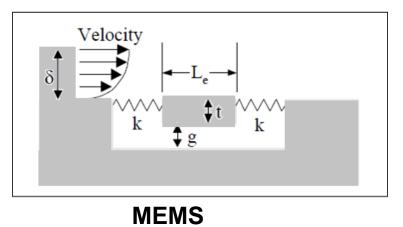
 Need in the market for a shear stress sensor that can be used outside the lab and decouple shear and normal stress

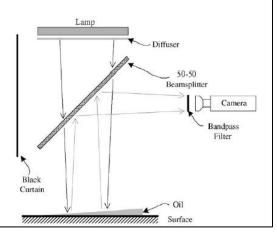
Project Scope

- Create Testing Apparatus
- Determine if cholesteric crystals are able to measure shear stress

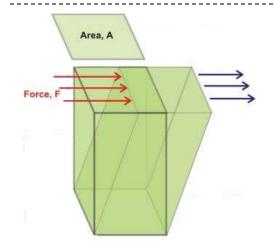
Objectives

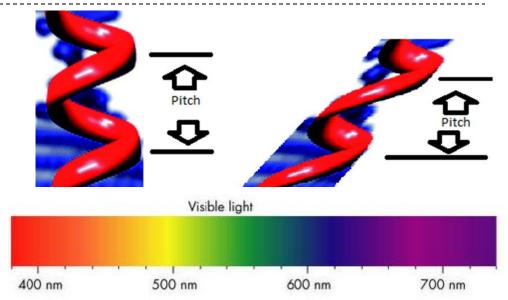
- Create a testing apparatus using given materials and setup
- Test Liquid Cholesteric Crystals
 - Possible to decouple the pressure and shear stress?
 - Determine the range of forces that can be detected
 - Determine how temperature affects the crystals
- Repeat tests with a polymerized form of cholesteric crystals

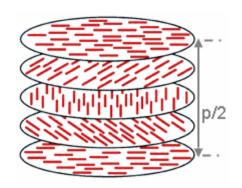

Constraints


- Baseplate and mounting points have been created by a previous group
- Light source and wavelength sensor must be adjustable
- Cholesteric crystals must be independent of heat

Existing Technology

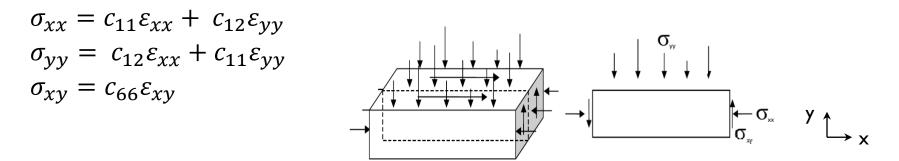

- Microelectricalmechanical Systems (MEMS)
 - Devices that have been fabricated using silicon micromachining technology
- Thin-Oil Film
 - Oil thickness is measured via interferometry function of the local friction.



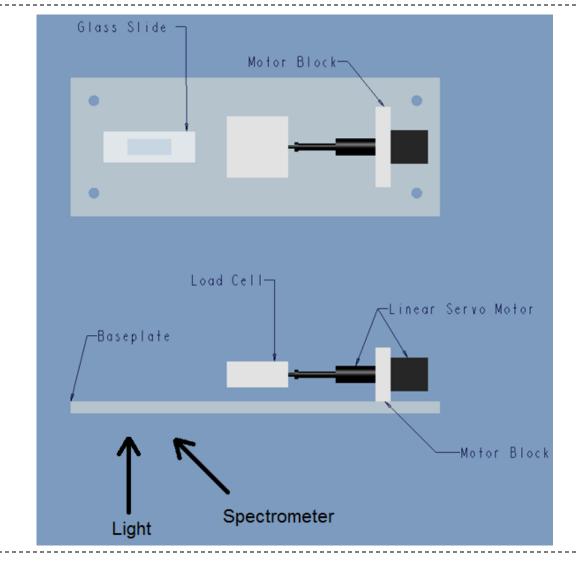

Thin-O

Cholesteric Crystals

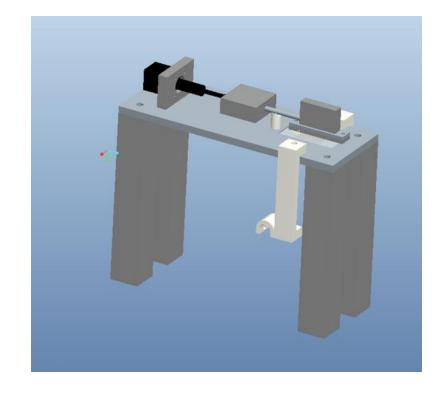
- Helical Structure
- Layers with no positional ordering
- Pitch varies with the boundary conditions
 - i.e. electricity or forces

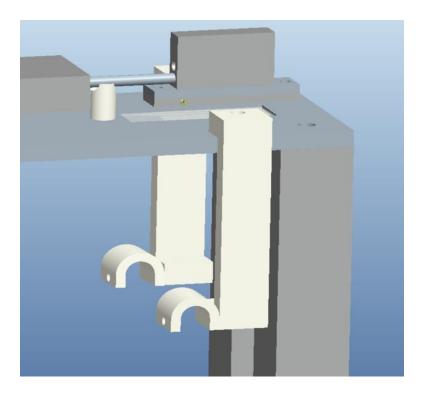


Theory

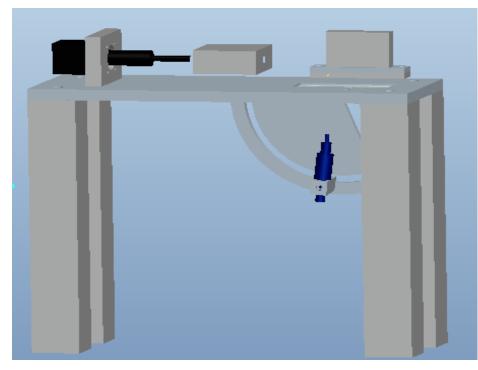

Plane Strain

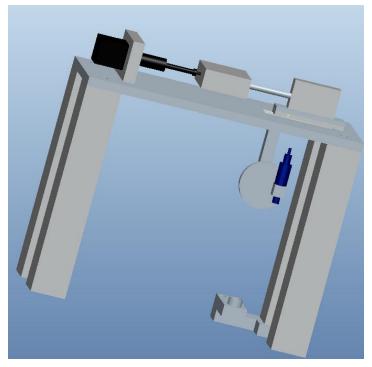
Material – Liquid **Crystals** $\varepsilon_{zz} = \varepsilon_{\chi z} = \varepsilon_{yz} = 0$ ▶ v = 0.3 E=500MPa $\sigma_{xz} = \sigma_{yz} = 0$


$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} (1-\nu) & \nu & 0 \\ \nu & (1-\nu) & 0 \\ 0 & 0 & \left(\frac{1-2\nu}{2}\right) \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{bmatrix}$$



Given Parts and Design

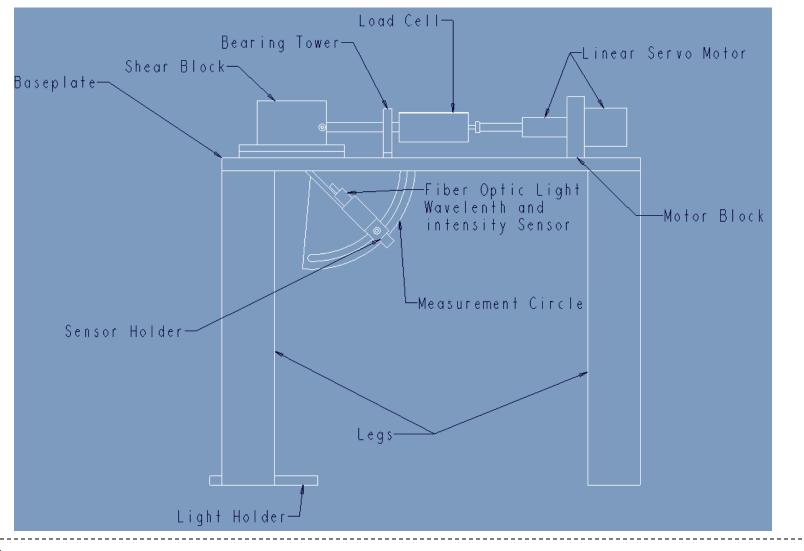

Concept 1



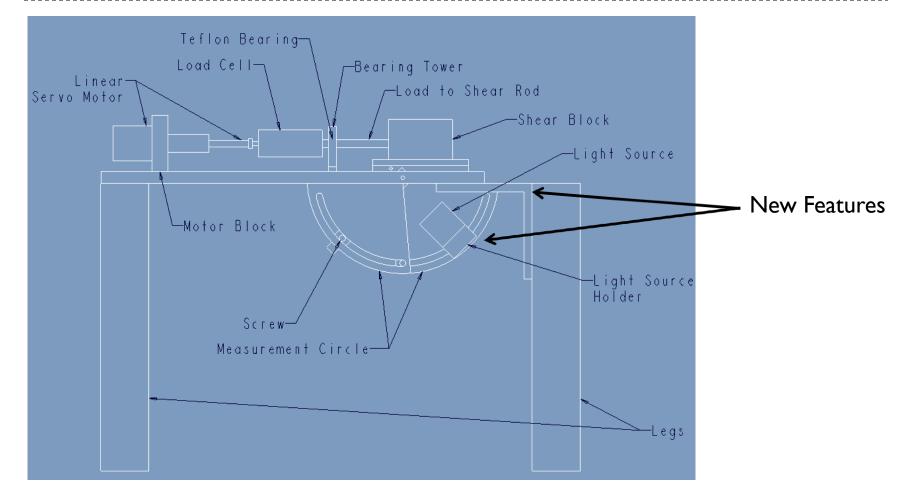
Concepts 2 & 3

Concept #2

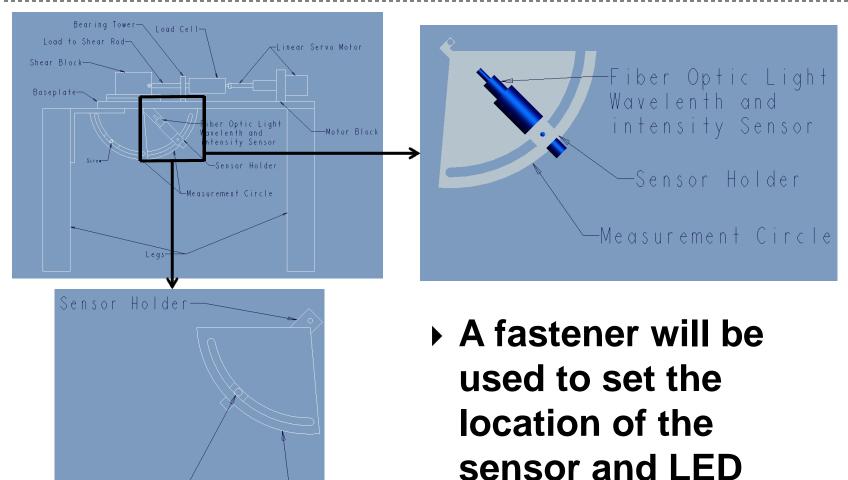
Concept #3



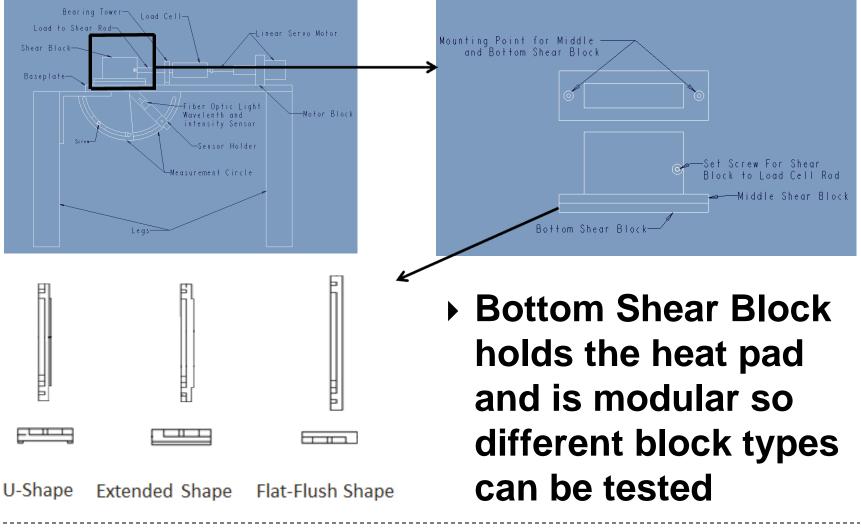
Decision Matrix


		Con	cept 1	Con	cept 2	Concept 3		
	Weight	Score	Weighted	Score	Weighted	Score	Weighted	
Ease of Use	0.2	2	0.4	4	0.8	4	0.8	
Reproducibility	0.3	3	0.9	5	1.5	2	0.6	
Accuracy	0.3	2	0.6	4	1.2	1	0.3	
Cost	0.15	3	0.45	2	0.3	3	0.45	
Size	0.05	2	0.1	3	0.15	4	0.2	
Total	1		2.45		3.95		2.35	

Final Design Selection: Concept 2

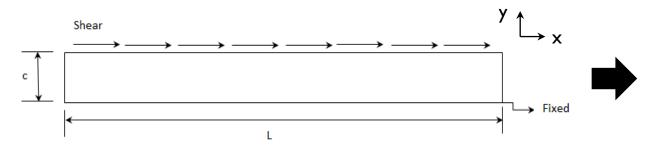

Interim Design

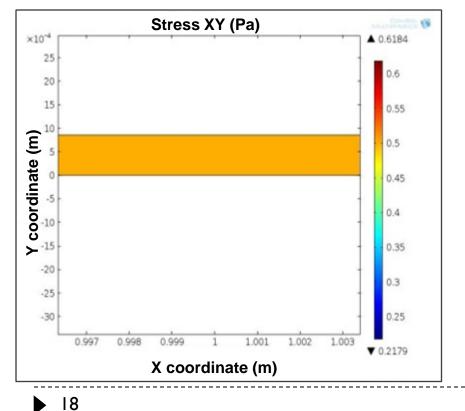
Final Design


Final Design

Screw

Measurement Circle

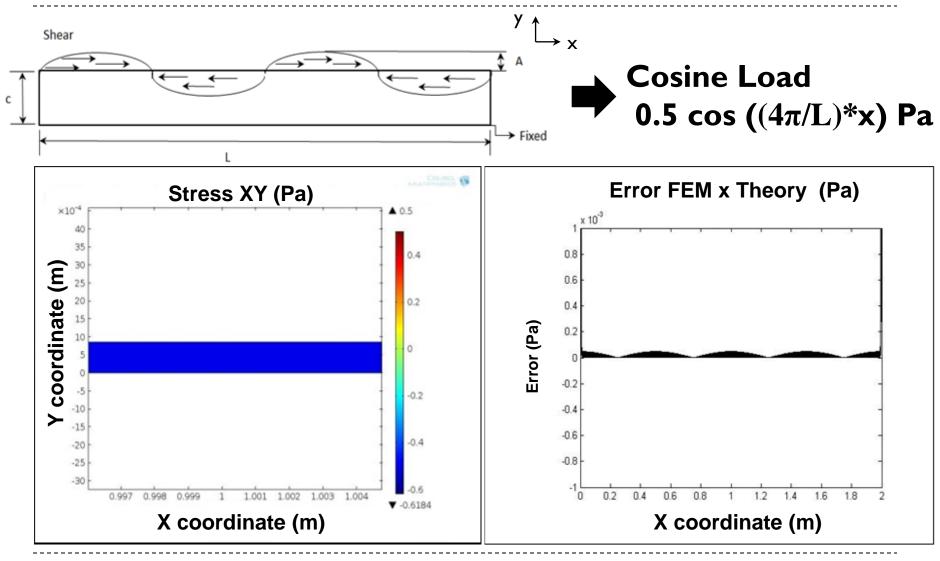

Final Design


LabView

- Correlation to shear load and voltage
- Load cell, servo-motor, spectrometer
- All need to start at the same time record information
- Import data to MATLAB

Simulation – FEM (Finite Element Method)

Constant Load 0.5Pa


Thin film - L=2000 (c)

Verification - Theory

 $\sigma_{xy} = c_{66} \varepsilon_{xy}$ $\varepsilon_{xy numerical} = 26x10^{-10}$ $\sigma_{xy analytical} = (1.92x10^8)(26x10^{-10}) = 0.4992 \text{ Pa}$ $\sigma_{xy numerical} = 0.5 Pa$

 $\sigma_{xy\,numerical} \simeq \sigma_{xy\,analytical}$

Simulation – FEM (Finite Element Method)

Cost Analysis

Part	Unit Price	Quantity	Price
Teflon Bearing	\$3.11	1	\$ 3.11
Insulation	\$9.03	1	\$9.03
Heat sheet	\$38.90	1	\$38.90
Fasteners			\$21.84
LEDs	\$23.74	3	\$71.22
Liquid Crystals	\$75.00	3	\$225.00
		Total	\$369.10

Cost Analysis

Parts Supplied

Part	Quantity	Price
Aluminum		\$64
Load Cell	1	\$935
Fiber Optic Spectrometer	1	\$2775
Linear Servo Motor	1	\$75
Software	1	\$60
	Total	\$3909

Schedule

			Q3			Q4			Q1			Q2		
	Task Name	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
1	Apparatus Progress						Appa	ratus Pro	ogress					
2	Light Source holder						Light	Source	holder					
з	Design Concept			1	Design	Concep	t							
4	Make ProE Drawings				Make	ProE D	rawings							
5	Machine Shop						Mach	ne Sho	P					
б	Sprectrometer Holder						Spre	ctrome	ter Ho	lder				
7	Design Concept			1	Design	Conce	pt							
8	Make ProE Drawings				Make	ProED	rawings	-						
9	Machine Shop						Mach	ine Sho	P					
10	Shear Block						Shea	Block						
11	Design Concept				Desig	n Conc	ept							
12	Make ProE Drawings				📕 Mak	e ProE	Drawing	5						
з	Machine Shop						Mach	ine Sho	P					
14	Calibration of Equipment							Calibra	tion o	f Equip	oment			
5	Load Cell						Load (3ell						
6	Spectrometer					1	Spectr	ometer						
7	Linear Servo Motor							linear S	ervo Mo	otor				
8	Testing								-	Testing	9			
9	Static							– s	tatic					
20	Dynamic								Dyna	mic				
21	Temp. Dependence								· ·	Temp. C	epende	ence		
22	Analysis									Anal	ysis			
23	Static								Stat	tic				
24	Dynamic									Dynam	nic			
25	Temp. Dependence									Tem	p. Depe	ndence		
26	Evaluation of Results										Eva	luation	of Result	ts
27	Sensor Design									– s	Sensor [Design		
28	Comparison to Others										Comp	arison to	Others	
29	Evaluate Vehicles										📕 Eva	uate Ve	hicles	

Questions/Comments

Purchase Order

McMaster-Carr

Part	Description	Quantity	Unit Price
Teflon Bearing	Sleeve Bearing for 1/4 " shaft diameter, 1/4 " length	1	\$ 3.11 each
Insulation	Ultra-Thin Insulation	1	\$9.03 each
Heat sheet	Ultra-Thin Heat Sheet- 10 Watts per inch ²	1	\$38.90 each
M2.5x45 Screw- 3mm	18-8 SS Metric Pan Head Screw- M 2.5x45- Length 3mm (Pack of 100)	1 pack	\$4.48
M2.5x45 Screw- 10mm	18-8 SS Metric Pan Head Screw- M 2.5x45- Length 10mm (Pack of 100)	1 pack	\$ 5.21
M2.5x45 Screw 20mm	18-8 SS Metric Pan Head Screw- M 2.5x45- Length 20mm (Pack of 100)	1 pack	\$6.55
10-24 Screw- 3/4 in.	316 SS Pan Head Screw 10-24 Thread- Length 3/4 in. (Pack of 25)	1 pack	\$5.61

Purchase Order

LED Supply

Part	Description	Quantity	Unit Price
LED	Carclo 20mm Luxeon Rebel- EndorStar Optic	1	\$5.99
Lens	Medium Ripple Lens and Lens holder (19° Illumination Pattern)	1	\$3.00
Lens Color	Neutral- White		
Case	Aluminum LED Housing with 1/2" NPT Thread w/ 6" wire leads	1	\$14.75
		Subtotal	\$23.74

Project Total \$90.08

Purchase Order

Pressure Chemical

Product	Description	Quantity	Unit Price
Liquid Crystals	Thermochromic Liquid Crystal Kit	3	\$75.00
		Total	\$225.00

Summary

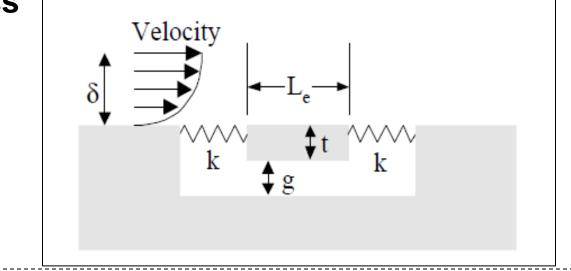
- Apparatus design is complete
- Machine shop is machining parts
- Parts have been ordered and received
- Programming has begun this month
- Testing will commence once programming and parts are completed

Current Shear Stress Sensors

Measurement of skin-friction

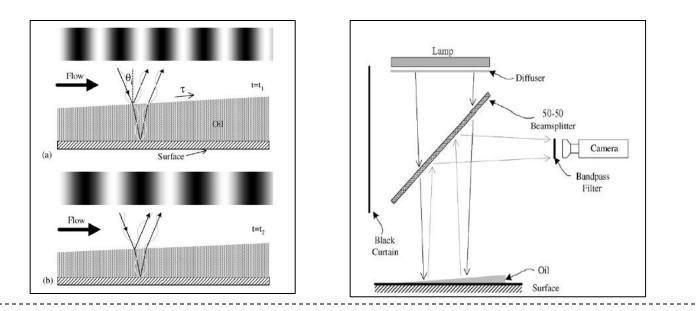
- importance in aircraft industry
- reduction in drag at cruise directly translates into a reduction in fuel consumption

Techniques


- Micro-Machined Sensors (MEMS)
- Thin-oil-film Techniques
- Liquid Crystal Techniques

MEMS

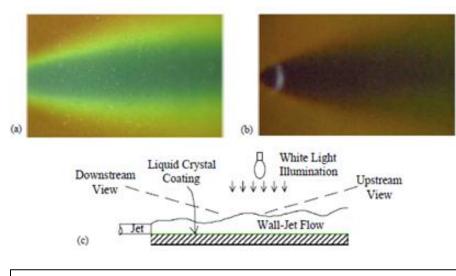
- Devices that have been fabricated using silicon micromachining technology
- High-resolution, time-resolved, quantitative fluctuating turbulence measurements in a controlled wind tunnel environment
- Open nature of these sensors is not well suited for dirty environments in which debris may be trapped in the sensor gaps


MEMS

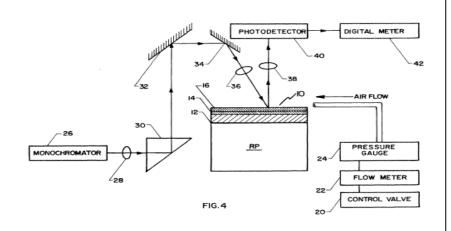
- Types Direct sensors, thermal sensors and laser based sensors
- Direct sensors Measure integrated force produced by the wall shear-stress on a flush movable "floating" element
- Displacement of the floating element function of wall shear stress

Thin-Oil Film

- Quasi direct means of measuring skin-friction
- The motion of oil film is sensitive to shear-stress, gravity, pressure gradients, surface curvature of the oil and surface tension
- Oil thickness is measured via interferometry function of the local skin-friction


Thin-Oil Film

- Types Single points, line and image techniques (1D and 2D)
- Image techniques 2D analysis
- Surface imaging skin-friction SISF
- Advantages
- Range of 4% of uncertainty two images during a single run
- Method is only sensitive to shear stress
- Limitations
- It requires at least two images acquired during a test
- Complexity


Liquid Crystal Coating

- Advantages
- Exhibit chemical stability so that they perform well over a reasonable interval
- Can be used in dirty environments as it is not dependent on electricity
- -Limitations
- Optical access, calibration and accuracy
- The color observed is dependent on illumination and observation angles
- The coating degrades with time, and, due to the exposure of shear sensitive liquid crystals to the flow, reapplication is often necessary

Liquid Crystal Coating

 (a) Downstream view, (b) upstream view, (c) schematic of the flow field [1]

Patent Number 5223310 -The laminate structure comprises a liquid crystal polymer substrate attached to a test surface of an article [3]