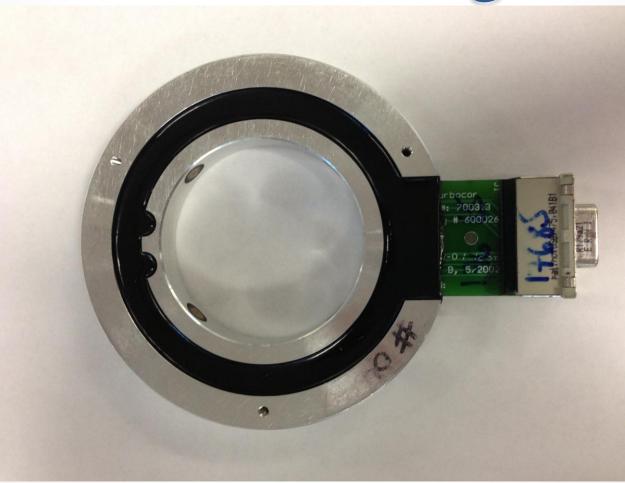
Production Test Fixture for Sensor

Ring Test

Concept Generation Group 5 Quy Nguyen, Mark Palmieri, Omar Izaguirre, Christopher Brink


Overview

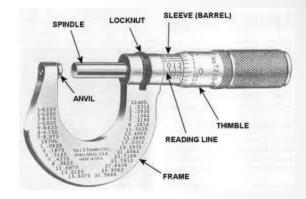
- Introduction
- Existing Technology
- Displacement Measuring Devices
- Concepts
- Conclusion
- References

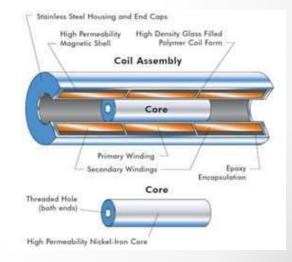
Introduction

- Problem Statement
 - The current sensor test rig does not allow for reliable accurate measurements
- Proposed Solution
 - Design and build a sensor test rig using an X-Y-Z platform with zero backlash
 - Repeatable

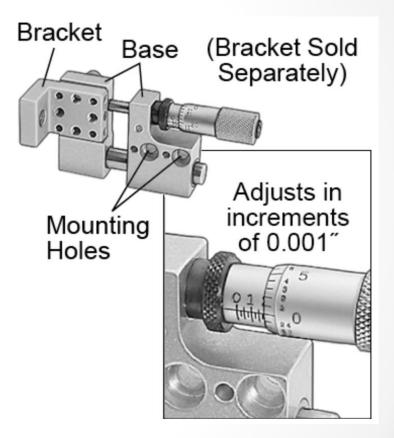
Sensor Ring

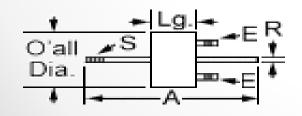
Existing Technology

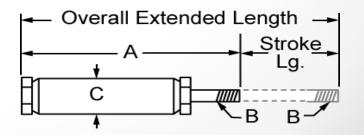

- Turbocor's current sensor test rig
 - Off-center shaft
 - Assumption of contact between shaft and ring
 - Back lash of stepper motor
- X-Y-Z Platforms

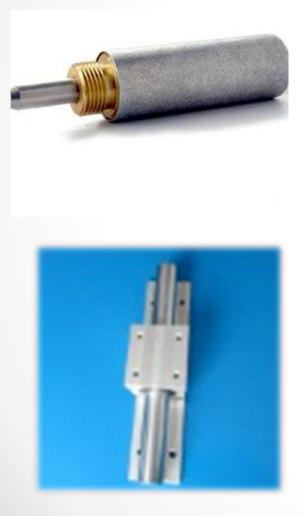


Displacement Measuring Devices


- Micrometer
 - Uses finely threaded screw to create and measure linear displacement
 - Accurately measures to the order of 10⁻⁶ meters
- Linear Variable Differential Transformer (LVDT)
 - Utilizes motion of a magnet to create voltage differential in coils
 - Voltage difference is linearly proportional to displacement of the magnet
 - Extremely accurate

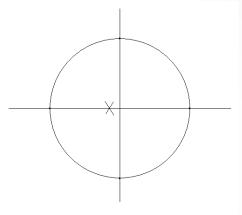

Displacement Methods


- Linear Micro Positioner
 - Utilizes a micrometer head
 and bracket
 - Creates and measures displacement in a continuous fashion
 - Minimal backlash
 - Relatively slow motion


Solenoid Actuator

- Uses electric current to create magnetic force via a coil
- "Clapper" solenoid can be used for three position linear movement
- 2 two-position solenoids facing each other can create the same three-position effect
- Hydraulic Actuator
 - Uses air pressure and a piston cylinder apparatus to create linear motion
 - Turbocor already has air lines run to testing station
- Both systems require independent displacement measurement such as an LVDT
- Both systems require physical "stops" to limit displacement

Solenoid / Hydraulic Actuator

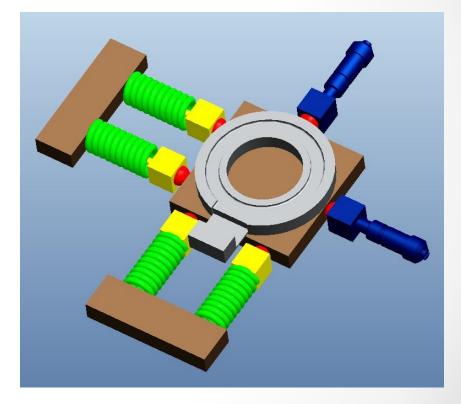


- Air valve controls solenoid movement using compressed air and user activation
- Guide tracks act to maintain linear displacement while eliminating possibility of unwanted misdirection
- Stoppers positioned on guide tracks limit movement

Rotary Table

- Existing testing rig used by
 Turbocor
- Implements stepper motor and belt-driven shaft to perform tests
- Off-center shaft creates measurable spacing difference
- Z direction testing

- Motor and belt-drive introduce backlash
- Inconsistency in locating the off-center rotation center between shafts


Concept 1: XY Displacement Table

- Pros
 - o Independent movements
 - Very precise
 - No vibration (backlash)
- Cons
 - Low load capacity (5kg)
 - Additional components for Zdisplacement

Concept 2: Spring Loaded Displacement Table

- Similar to XY
 Displacement Table
- Controls are manual
- Micrometer heads for displacement
- Spring loaded to prevent backlash
- Ball bearings allows
 smooth movements
- Z-Displacement use similar method

Conclusion

- Existing technology is beneficial in development of project
- Because of the required precision and accuracy, it is difficult to machine the XYZ platform
- Utilizing existing platforms, a base can be created for the sensor ring.

References

- "Featured Motion Control Products." High Performance Positioning Systems: Linear Slides, Rotary Stages and Gimbal Mounts. Newmark Systems Inc., n.d. Web. 23 Oct. 2012. http://www.newmarksystems.com/>.
- "LINEAR ACTUATORS, ROTARY TABLES, ROTARY ACTUATORS, XY TABLES." Rotary Table, XY Table, Linear Actuator from IntelLiDrives. IntelLiDrives, n.d. Web. 18 Oct. 2012. http://www.intellidrives.com/.
- "M545 Open-Frame Microscope Stage, Long-Range Motion for Sample Positioning." M545 Open-Frame Microscope Stage, Long-Range Motion for Sample Positioning. PI, n.d. Web. 18 Oct. 2012.
 http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=201525>.
- "McMaster-Carr." McMaster-Carr. N.p., n.d. Web. 12 Oct. 2012. <http://www.mcmaster.com/>.
- Rizzoni. Principles and Applications of Electrical Engineering. Fifth ed. N.p.: McGraw-Hill Primis, 2006. Print.