

CENTER FOR INTELLIGENT SYSTEMS, CONTROL, AND ROBOTICS

Team 10 **GOLIATH Autonomous ATV**

Group Members:

Michael Brazeau Omesh Dalchand Lester Kendrick

Marc Akbar

Jeremy Hammond Merrick Salisbury

Advisors:

Dr. Chiang Shih

Dr. Kamal Amin Dr. Michael Frank Dr. Oscar Chuy Dr. Emmanuel Collins

> Instructor: Dr. Kamal Amin

Background

- CISCOR focuses on mobile robotic path-planning
- Requires a more robust autonomous off-road platform
- Previous work included remote control
- Actuators installed

Objectives

- To integrate a sensory system that will scan the surrounding environment
- Use data to compute a trajectory to perform waypoint navigation and road following autonomously
- Will be used as a future research platform for CISCOR

SICK Laser

- SICK LMS-200 Laser Measurement System
- 180 degree scan profile
- Angular resolution
 - = 0.25°
- Two lasers

- Side-by-Side configuration
- Pros
 - Uniform weight distribution
 - Simple
- Cons
 - Complicated calculation
 - Possible laser
 interference

- Stacked configuration
- Pros
 - Centerline allows ease
 - of calculation
 - No interference

- Cons
 - Susceptible to environment damage
 - Additional mounting components required

- Front-Back configuration
- Pros
 - Both lasers on centerline
- Cons
 - Rear laser requires additional components
 - Rear laser susceptible to impact

Encoder

- Accu-Coder 725 Encoder
- 30,000 counts per revolution
- Quadrature encoding

- Front-Front configuration
- Pros
 - Safe location
 - Simple mount
- Cons
 - Encoder belt close
 to ATV frame

- Front-Under configuration
- Pros
 - Belt and pulley clearance
 - Simple bracket manufacture

- Cons
 - Reduces ground clearance
 - Skid plate required

Skid Plate

Michael Brazeau ¹¹

- Rear-Rear Configuration
- Pros
 - Component clearance
 - Simple mounting and adjustment
- Cons
 - Belt damage
 due to debris

Steering Motor Design Concept

- Brushed 24 VDC Motor
- Mounted in same location
- Pros
 - Simple modification
 - Utilize existing mounts/wires
- Cons
 - Larger bending moment

GPS Design Concept 1

- Pro-Pack G2 plus GPS
- Front configuration
- Pros
 - Simple installation
 - Ease of access
- Cons
 - Low antenna stability
 - Close proximity to emergency cut-off

GPS Design Concept 2

- Rear-Trunk configuration
- Pros
 - Protects GPS unit
 - Stable antenna
- Cons
 - Aluminum plate required for antenna
 - Adds heat source to trunk

Heat Dissipation

- Previous overheating issue with trunk
- Approximately 250-300 Watts
- Require design to disperse heat
- Design must maintain weatherproof feature

- Forced convection due to vehicle motion
- Baffle system to weatherproof
- Pros
 - Inexpensive
 - Consumes no power
- Cons
 - May not remove enough heat
 - Large number of slits could let debris in

- Forced convection
- Pros
 - Relatively inexpensive
 - Large cooling capacity
- Cons
 - Uses extra power to run fans
 - Still susceptible to debris

- Liquid-Cooling configuration
- Pros
 - Maintains waterproofing
 - High cooling capability
- Cons
 - Expensive
 - Extra power required to
 - run pump
 - Complex

IMU

- Crossbow Inertial Measurement Unit
- Six degrees of freedom
- Linear acceleration
- Rotational velocity

IMU Design Concepts

Computer needs and control

- Three computers
 - Ubuntu running ROS
 - QNX
 - Chase computer with Ubuntu running ROS
- Wireless router
- Sensors

Computer needs and control

Omesh Dalchand ²³

ROS (Ubuntu) Computer

- Sensors
 - Laser
 - GPS
 - IMU
 - Camera (optional)
- Code
 - Waypoint following
 - Road following

Conclusion / Future Plans

- Large number of conceptual designs gives us many options for our final design
- Confident our designs will meet the requirements
- Further analysis will be done for final design decisions
- Autonomous algorithm development and testing

Gantt Chart

Actual

Due date

Dependency

Plan

Team 10 Autonomous ATV (GOLIATH)

CISCOR

Sources

http://sicktoolbox.sourceforge.net/docs/sick-lms-technicaldescription.pdf

http://www.novatel.com/assets/Documents/Papers/ProPakG2plus.pdf

http://saba.kntu.ac.ir/eecd/ecourses/instrumentation/projects/report s/Poly%20Gyroscope/Producers/Crossbow/IMU/6020-0019-01_B_IMU300CC.pdf

http://www.ctiautomation.net/PDF/Accu-Coder/Accu-Coder-725-Shaft-Encoders.pdf

http://www.maxonmotorusa.com/medias/sys_master/880701476047 8/13_106_EN.pdf

Fin

Questions? Comments?

