2013 NASA/RASC-AL Robo-Ops Competition

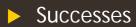
Midterm Report

Team Members:

Boris Barreto - Electrical and Computer Engineering Jason Brown - Mechanical Engineering Justin Hundeshell - Mechanical Engineering Linus Nandati - Electrical Engineering Tsung Lun Yang - Mechanical Engineering

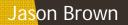
Project Overview

Objectives

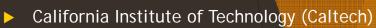

- Build an innovative rover design capable of competing in the 2014 Robo-Ops competition
- Capable of traversing environments similar to those on Mars
- Tele-Operated using wireless communications
- > And Pick up brightly colored rocks using an extraction unit
- Goals for this year's platform
 - Build two smaller rovers
 - Improve Communications Design

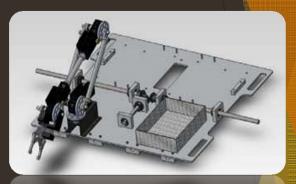
2

Jason Brown


Last Year's Platform

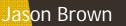
Area's for Improvement





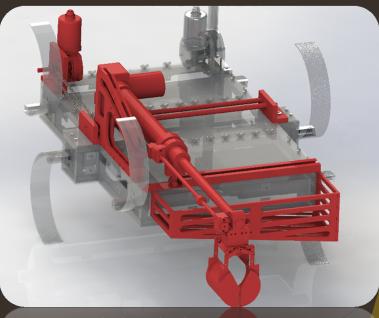
Research

Studied previous designs from other schools


Worchester Polytechnic Institute (WPI)

University of Massachusetts Lowell (U-Mass Lowell)

NU-11-11-11-11-1

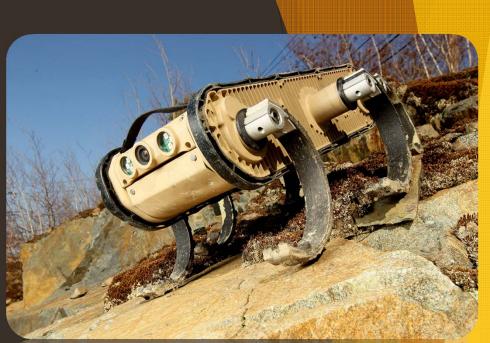


Design and Prototyping

5

Major Design Components

- Rover locomotion system
- Cooling system
- Extraction unit
 - Robotic arm
 - Robotic gripper


Platform for SpaceHex 2013

Tsung 'Chris' Lun Yang

Rover Design

- RHex Hexapedal Robot
 - Six C-shaped compliant legs
 - Remarkable terrain capabilities
- Multiple vs. Single Rover System
 - Requirements
 - ► Weight <= 45kg
 - ▶ Size = 1m x 1m x 0.5m

Rhex from Boston Dynamics

Cooling System Design

Increase Convective Heat Dissipation

- Modify frame to expose motor
- Increase air flow

Minimize sand infiltration

Liquid Cooling System

SpaceHex - Enclosed platform


- Proven to increase heat dissipation
- Enclosed system eliminate sand infiltration
- Disadvantage: expensive, weight

Tsung 'Chris' Lun Yang

Initial Cooling System CAD Design

Extraction Arm Design

- Low degree of freedom (2 DOF)
 - Roll-Pitch motion
 - Advantages:
 - Simple control
 - Light weight
 - Disadvantages:
 - Small ground coverage
 - Require translational adjustment from the rover platform

2 DOF Extraction Arm Modules

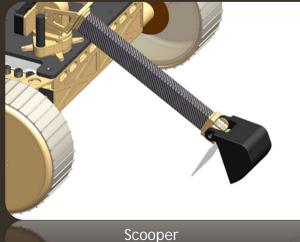
Tsung 'Chris' Lun Yang

Extraction Arm Design

Multi-degree of freedom (3+ DOF)

- Roll-Pitch-Pitch motion
- Advantages:
 - ► Great ground coverage
 - Good extraction angle
- Disadvantages:
 - More complex control
 - Potentially heavier
 - Usually slower than low DOF arms

Multi-DOF Arm Modules


tial Arm Module CAD Design

Tsung 'Chris' Lun Yang

Extraction Gripper Design

- Pincher Gripper
 - Precise
 - Orientation sensitive
 - Complex control

Low precision

requirement

Simple mechanism

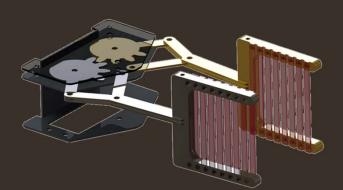
Large contact area

Scooper

Compliant Gripper

- Strong shape/orientation adaptation
- High power consumption

Universal Gripper

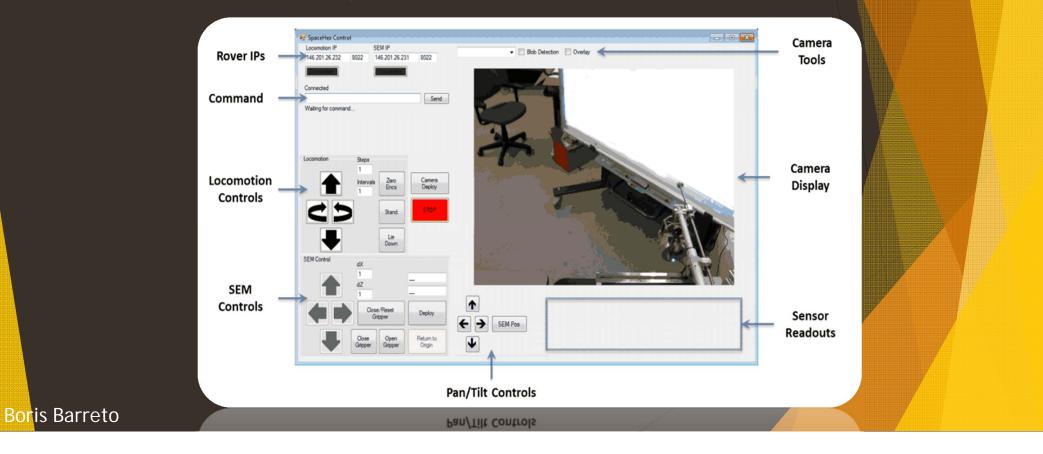

Extraction Gripper Design

Elastic Pincher

- Two pronged pincher design
- Elastic material end effector conforms to sample shape
- Balance between precision and traction

First Generation Prototype Tsung 'Chris' Lun Yang

Second Gen. Prototype CAD Model


Second Generation Prototype

COMMUNICATIONS AND CONTROLS

13

GUI

- Lots of input information needed from user
 - ► Look to make more user friendly

Communication Layout

User Routers with

more Bandwidth

faster than 3G

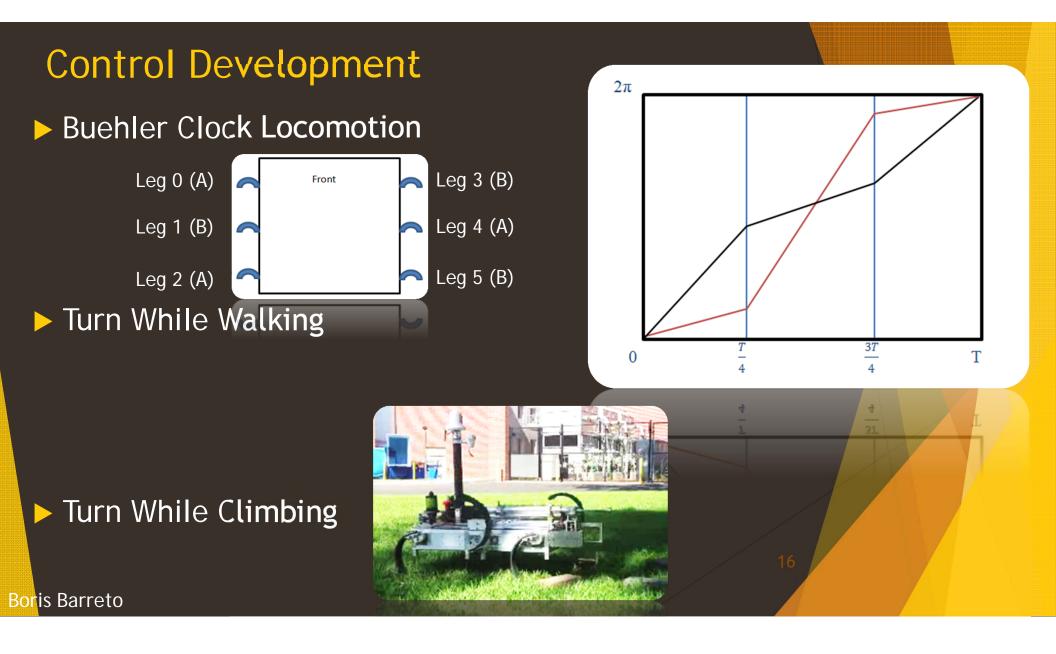
as Backup for

redundancy Boris Barreto

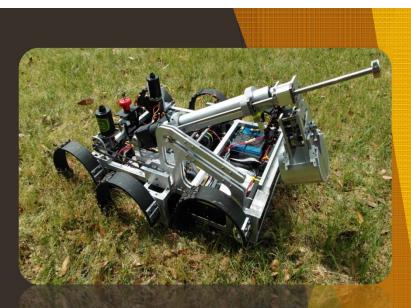
Upgrade from 3G to 4G

Verzion 4G up to 8 times

Use AT&T's 4G Network


Left: Type G Router Right: Type N Router

Verizon 4G USB Stick


AT&T 4G USB Stick

Advanced Controls

"Lay-Down-Nudge" Function

Operation through Gaming Controller

Boris Barreto

THANK YOU

18

References

- Boston Dynamics: Dedicated to the Science and Art of How Things Move." Boston Dynamics: Dedicated to the Science and Art of How Things Move. N.p., n.d. Web. 22 Oct. 2013.
- "Kod*lab." : A Subsidiary of the Penn Engineering GRASP Lab. N.p., n.d. Web.
 22 Oct. 2013.
- Mars science laboratory: curiosity. Retrieved from http://mars.jpl.nasa.gov/msl/
- Blau, Patrick (n.d.). "MSL Sampling System". Retrieved fromhttp://www.spaceflight101.com/msl-sampling-systems.html
- Mars exploration rovers. Retrieved from http://marsrover.nasa.gov/home/index.html