2014 NASA/RASC-AL Robo-Ops Competition

Dr. Jonathan Clark

Dr. Uwe H. Meyer-Baese

Spring Midterm 1 Presentation

Team 11 Members:

- Electrical and Computer Engineering
 - Mechanical Engineering
 - Mechanical Engineering
 - **Electrical Engineering**
 - Mechanical Engineering

Team 11 Advisors:

- Mechanical Engineering
 - Electrical Engineering

Boris Barreto

- Jason Brown
- Justin Houdeshell
- Linus Nandati
- Tsung Lun Yang

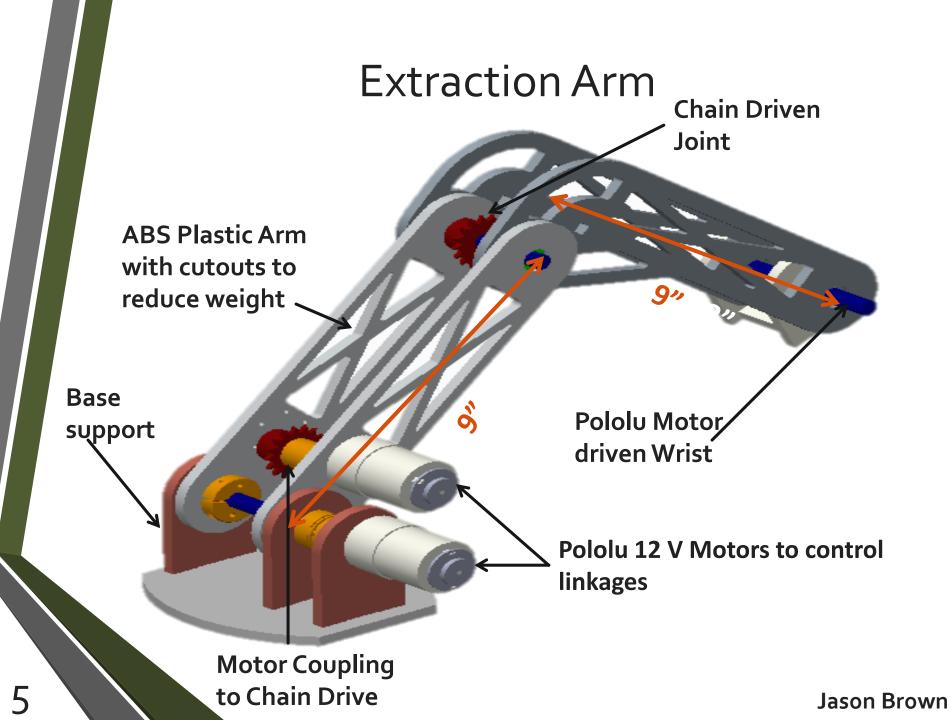
Project Scope

- Fall 2013
 - Build a rover to compete in the 2014 Robo-Ops Competition
 - Areas for development
 - Sample Extraction Module
 - Controls
 - Communications
 - Feed back from NASA about <u>last</u> year's rover system
 - Locomotion
 - × Extraction module
 - Feed back from NASA about <u>this</u> year's rover system
 - × Locomotion
 - Extraction module

- Spring 2014
 - Switch to backup plan
 - Build a fully functional, scaled down rover for next year's competition
 - Areas for development
 - Sample Extraction Module
 - Manipulator arm
 - End effector
 - Controls
 - Dynamic control
 - Communications
 - Network
 - Project constraints unchanged

Project Constraints

- Rover Physical Constraints
 - No larger than 1m x 1m x 0.5m
 - Less than or equal to 45kg.
 - Traverse over obstacles up to 10cm in height.
 - Pick up rocks ranging from 2 to 8 cm in diameter and masses ranging from 20 to 150 g.
 - The rover(s) will be controlled remotely based from the home campus of the university


Jason Brown

Extraction Arm

	Fall Design	Spring Design	
Drive Motors	Maxon Motor with 113:1 Gearbox	Pololu 12V 100:1 DC motors	
Wrist Motors	Pololu Micro Metal Gear Motors	Pololu Micro Metal Gear Motors	
Link Material	6063 Aluminum	ABS Plastic	
Overall Reach	26 inches	18 inches	
Estimated Weight	6 kg	4 kg	

4

Jason Brown

Extraction Arm

Jason Brown

Extraction End Effector

Large contact area

Simple control

Precise

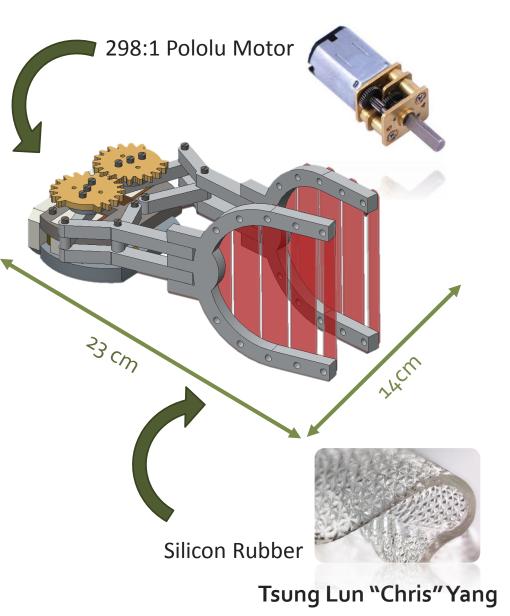
Worcester Polytechnic Institute

Scooper Design

Pincher Design

West Virginia University

- Strong shape/orientation tolerance
- High power consumption

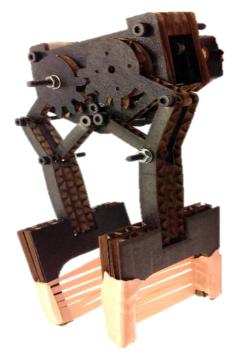

Elastic Pincher Design 3nd Generation Prototype

Tsung Lun "Chris" Yang

Extraction End Effector

Elastic Pincher

- Two pronged pincher design
- Large contact surface
- Passive elastic material end effector conforms to sample shape
- Components:
 - 298:1 Pololu Motor
 - Silicon Rubber for Gripper Material
 - ABS Plastic for the Frame


Extraction End Effector Prototype

1st Generation Prototype

2nd Generation Prototype

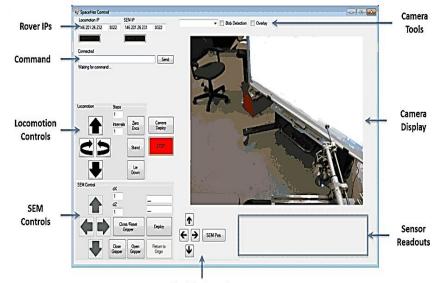
3rd Generation Prototype

- Elastic material viable
- Improve linkage mechanism

- New elastic material: First Aid tape
- Increase elastic surface area
- Mars suitable elastic material finalized: Silicone Rubber
 - Temperature range: -120C to 300C

Tsung Lun "Chris" Yang

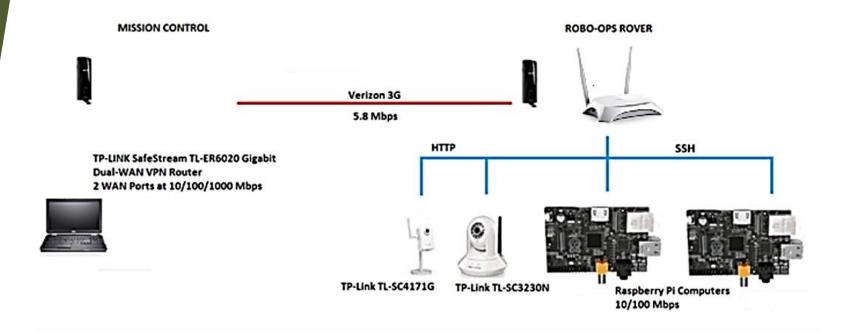
Control Development


Locomotion Types	Status	
Buehler Clock Locomotion	Complete	
Turn While Walking	Complete	
Turn While Climbing	In development	
Nudge Function	Not Started	
Stair Climbing	Prototype Complete	

Linus Nandati

Advanced Controls

• Operation through Gaming Controller



Linus Nandati

Existing Design

- Upload speed to WAN from LANs does matter
- Data processed and transferred in WAN different than LAN

Linus Nandati

Bandwidth Issues

- Typical 480p hour long video is 300 MB
 - Or 2400 Mbits
- 2 Video feeds and controls
- Larger Bandwidth beneficial

Upgrades

- 1. 3G to 4G
- 2. Dual Networks- Verizon and AT&T
- 3. Dynamic Switching
 For redundancy in case of network failure

Linus Nandati

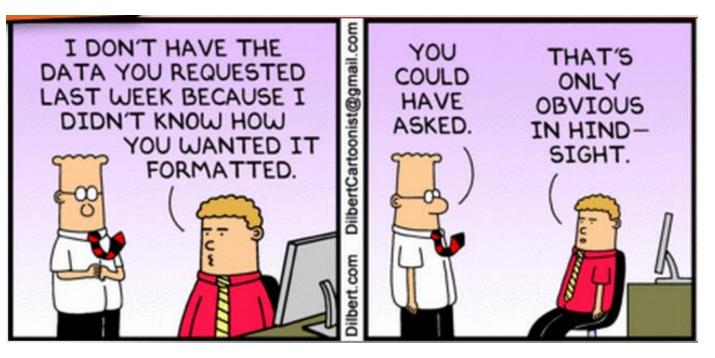
Project Procurement

		Vendor	Part		Quant	
	ltem		Number	Cost	ity	Total
Arm	Pololu 12V Motors with	Pololu	397172			
	Encoders			\$39.95	3	\$120
		Pololu	110512			
	Encoders			\$8.95	4	\$36
	Pololu 298:1 Micro Metal Gear Motor	Pololu		\$16.95	4	\$68
	Shafts, Bearings, Chain, Sprocket and	Misumi				
	Misc. Hardward			\$270	1	\$270
		Interstate Plastics				
	¼" ABS Plastic			\$15.00	4	\$60
TOTAL						\$554

Jason Brown

PROJECT SUMMARY

Competition Status	Not selected to participate 2014 Robo-Ops competition	
	Switch to back up plan	
Rover Locomotion	Improved locomotion control (turn while walking/Stair climbing)	
	Dynamic control (Xpadder/SDL)	
Extraction Module	Lightweight, ABS plastic frame manipulator with 3 DOF	
	Elastic pincher proven viable, developing next generation prototype	
Communication	Dual 4G network wireless adaptor (AT&T/Verizon)	
-	Investigate dynamic network switching (WAN)	
Future plans	Continue procurement process	
	Transition from prototyping to final product	
	la seu Dussuu	


16

Jason Brown

References

- http://www.maxonmotorusa.com/maxon/view/product/motor/dcmotor/re/re40/ 148867
- http://www.robotshop.com/en/pololu-298-to-1-micro-gear-motor-hp.html
- http://www.tp-link.us/products/details/?categoryid=1678&model=TL-ER6020
- http://www.britannica.com/EBchecked/topic/182081/elastomer#ref625240
- http://mars.nasa.gov/msl/mission/instrumentms/environsensors/rems/
- http://creativemachines.cornell.edu/jamming_gripper
- http://wpirover.com/category/robo-ops/
- http://robotics.cs.uml.edu/home/news/single-news-article/article/nasa-rasc-alrobo-ops-2013-competition-umass-lowell-rover-hawks-video/
- http://www.tp-link.us/products/details/?categoryid=1678&model=TL-ER6020
- http://raspberrypi.stackexchange.com/questions/1976/alternatives-to-raspberrypi
- http://www.tp-link.us/products/?categoryid=202
- http://www.raspberrypi.org/

Question/Comment?

