2014 NASA/RASC-AL Robo-Ops Competition

Spring Final Presentation

Team 11 Members:

Electrical and Computer Engineering

Mechanical Engineering

Mechanical Engineering

Electrical Engineering

Mechanical Engineering

Team 11 Advisors:

Mechanical Engineering **Electrical Engineering**

Boris Barreto

Jason Brown

Justin Houdeshell

Linus Nandati

Tsung Lun Yang

Dr. Jonathan Clark Dr. Uwe H. Meyer-Baese

Presentation Outline

Project Scope

Overall Design

- Extraction Module
- Network and Communication
- Locomotion and Control

Project Summary and Future Plans

Project Scope

• Objectives

- Build an innovative rover design capable of competing in the 2014 Robo-Ops competition
- Selective Competition (8 Teams Nationally Compete)
- Capable of traversing environments similar to those on Mars
- Tele-Operated using wireless communications
- Pick up brightly colored rocks using an extraction unit

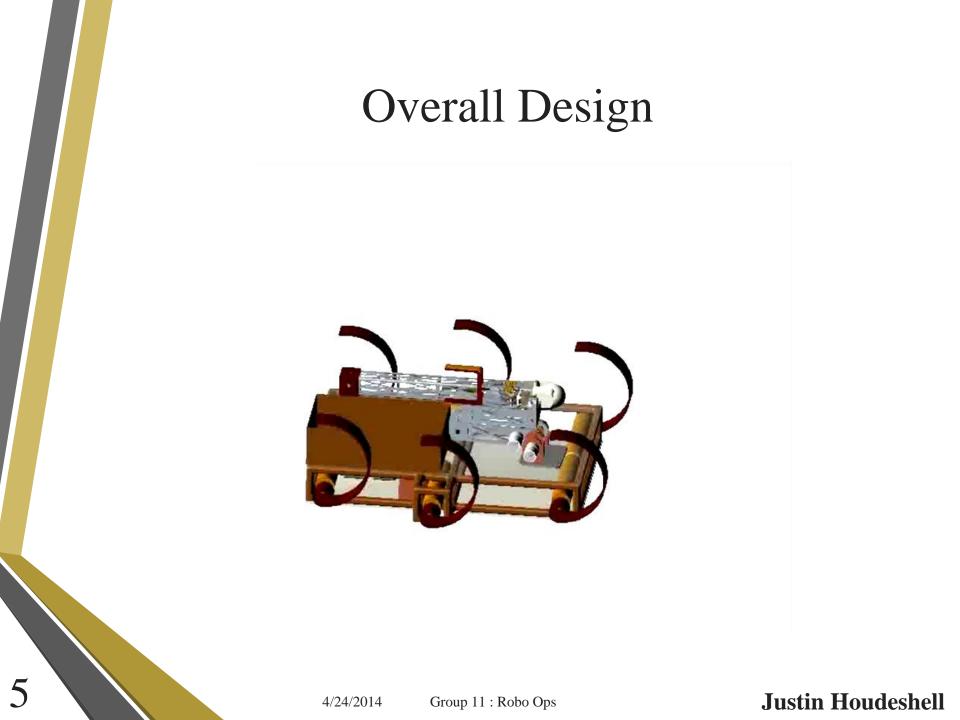
Areas for development

- Sample Extraction Module
 - Manipulator arm
 - End effector
- Controls
 - Dynamic control
- Communications
 - Network

NASA Curiosity Rover

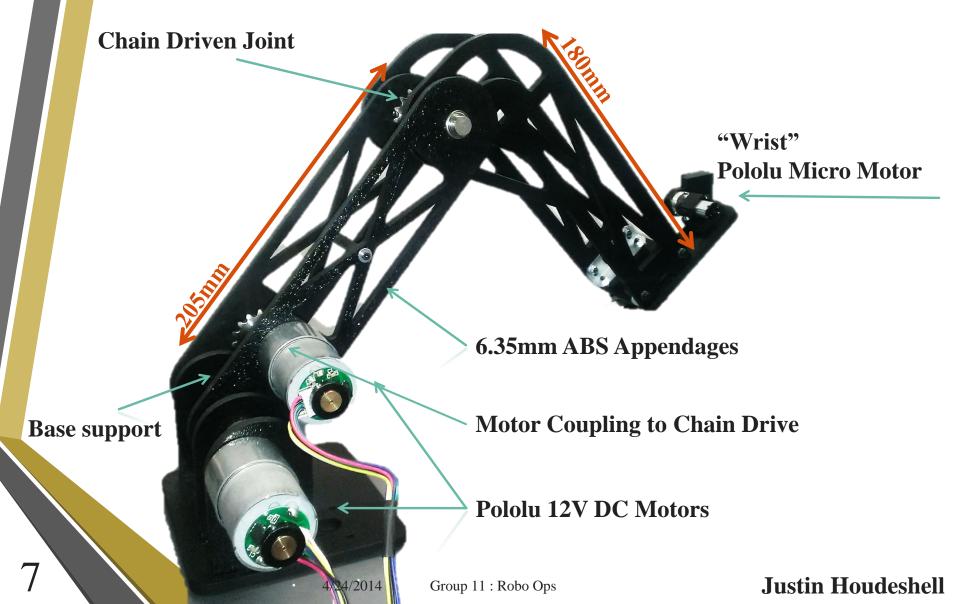
Johnson Space Center Rock Yard

Jason Brown


4/24/2014 Group 11 : Robo Ops

Project Constraints

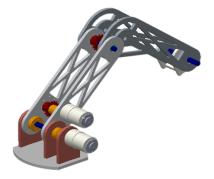
- Rover Physical Constraints
 - No larger than 1m x 1m x 0.5m
 - Less than or equal to 45kg.
 - Traverse over obstacles up to 10cm in height.
 - Pick up rocks ranging from 2 to 8 cm in diameter and masses ranging from 20 to 150 g.
 - The rover(s) will be controlled remotely based from the home campus of the university


Research

• Studied previous designs from other schools

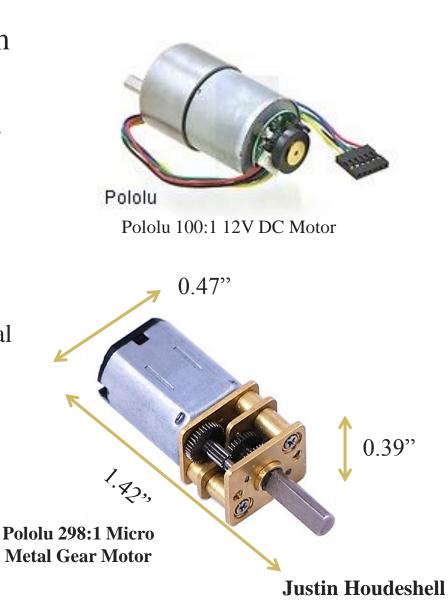
• Worchester Polytechnic Institute

Extraction Arm



Extraction Arm

	2013 Design	Fall Design	Spring Design
Drive Motors	McMaster Carr Linear Actuator	Maxon Motor with 113:1 Gearbox	Pololu 12V 100:1 DC motors
Link Material	6063 Aluminum	6063 Aluminum	ABS Plastic
Overall Reach	320 mm	660 mm	385 mm
Estimated Weight	10 kg	6 kg	3 kg
Advantages	Simple Control Scheme Stable Platform	Large Workspace	Lightweight Moderate Reach
Disadvantages	Limited Workspace	High Torque Requirements	Deflection



Justin Houdeshell

Motor Selection for Arm

- Used Torque Calculations from Matlab to determine Motors
 - Determined Max Torque of 10.2 kg cm
 - Pololu 12V 100:1 Motor
 - 15.8 kg cm of Torque
 - Weight: 223 grams per motor
 - Selected Pololu 298:1 Micro Metal Gearmotor for wrist and gripper actuation
 - Weight: 10 grams
 - Torque: 6.5 kg-cm
 - 1.42" x 0.39" x 0.47"

Extraction Arm Control

Potentiometer model Read differential voltage from potentiometer Converted analog signal to digital signal via MCU Map digital signal to motor position Complete integration of mechatronic system

Jason Brown

Extraction Arm Control

- DragonBroad
 - PID Control
 - Decodes Quadrature Encoder
 - Determines Duty based on Current Position, Velocity, and Summed Position Error

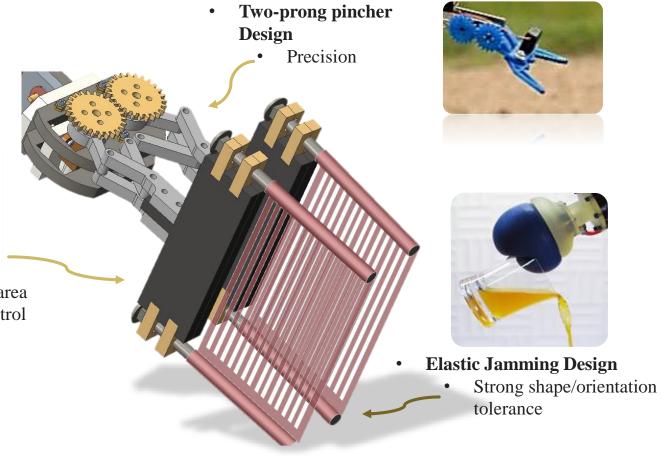
4/24/2014

• RoboClaw

www.pololu.co

- Receive Duty from UART
- Sends Duty to Motor

Group 11 : Robo Ops


Motor Signals

Encoler Sienals

Jason Brown

Rx Line

Tx Line

Scooper Design

- Large contact area
- Simplified control

1st Generation Prototype

2nd Generation Prototype

3rd Generation Prototype

- Elastic mechanism viable
- Improve linkage mechanism for precision

13

- Testing elastic material: First Aid tape
- Need to increase elastic surface area

4/24/2014

- Mars suitable elastic material finalized: Silicone Rubber
 - Temperature range: -120C to 300C

4/24/2014 Group

14

Group 11 : Robo Ops

Tsung Lun "Chris" Yang

Sample Extraction Module Future Plans

- The complete system have reduced weight by 60% compared to previous design, further weight reduction possible.
- Upgrade hardware to achieve robust manipulator arm and gripper control
 - Higher grade DC motor
 - Fully incorporate RoboClaw motor controller
 - Dedicated decoder
 - Build-in PID routine

Communications

Last Year's Issues:

-dropped coverage

-lagging video/ relay of commands

Lessons Learned:

-needed larger bandwidth

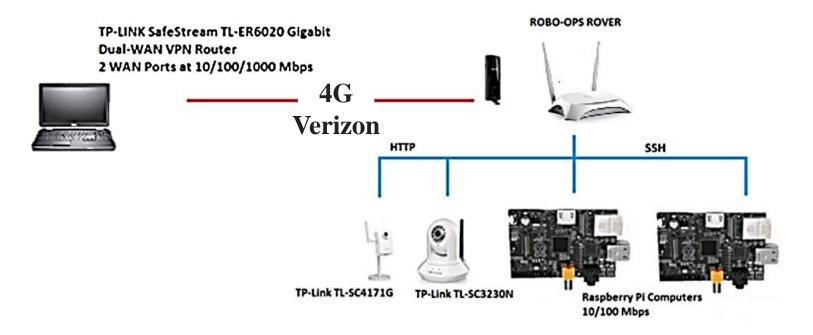
-secure specified IP addressed for teams use -needed to be exclusive and secure from eavesdroppers

Communications What We Have Done:

-Update from 3G to 4G Verizon service

-Service speeds 8x faster

-New 4G USB modem


-IP addressing from No-IP.com
-pool of IP addresses supplied for modem
-allows for IP address to be dynamic
-Static was giving problems with the USB modem
-no need to constantly sniff for specific IP

Linus Nandati

Planned Design

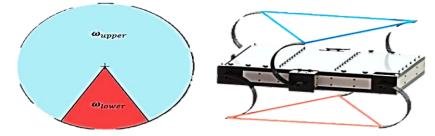
- Communicate with USB modem
 - IP Address Pool supplied by No-IP.com
- Data packets processed and transferred between two LANs via WAN
 - Think of a smartphone and the rate at which it can access data

Communications Future Plans

- -Secure Bandwidth for Multiple Cameras
- -Incorporate AT&T (split BW demands)
- -Dynamically be able to switch between networks
 - -This is done Through Script Writing
 - -Utilize all the Bandwidth
 - -Open source software is needed, complex idea

Controls Motivation

Existing Locomotion Gaits

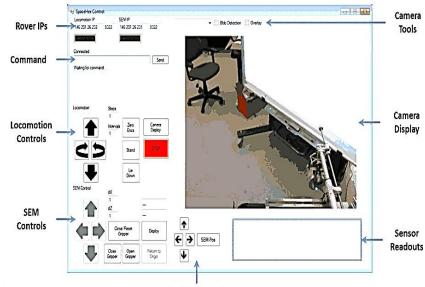

- Calibrate
- Forward Walk
- Backward Walk
- Turn-In-Place
- Lay Down
- Stand Up
- Hill Climb

22

4/24/2014

Group 11 : Robo Ops

User Interface


Locomotion Types	Status
Turn While Walking	Complete
Stair Climbing	Prototype Complete

User Interface

- Old GUI
 - Video Feed
 - Temperature sensors
 - Connection indicators
 - Not User-Friendly
 - Slow
- XBOX Controller
 - Comfortable Environment
 - Fast
- SDL
- Curses

Pan/Tilt Controls

Boris Barreto

4/24/2014

Group 11 : Robo Ops

Dynamic Switching

Static Control

25

Dynamic Control

Videos Played at 2x Speed

4/24/2014 Group 11 : Robo Ops

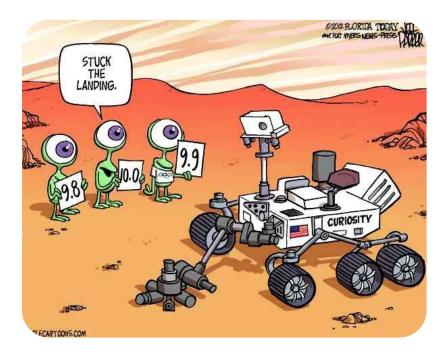
Boris Barreto

Locomotion Future Plans

- Develop Additional Gaits
 - Turn While Climbing
 - Small Angle Turning
 - Refine Stair Climbing
- Reduce Delay Switch Between Gaits
 - Currently 500 ms delay between gaits
 - Smoother and more rapid transition between gaits
- Utilize more Functionality of Xbox Controller
 - Vibrate Functionality
 - Use Wireless Remote
 - Develop Supplementary GUI

Project Procurement

	Item	Vendor	Part Number	Cost	Quantity	Total
	Pololu 12V	Pololu	397172			
	Motors with					
	Encoders			\$39.95	3	\$120
	Encoders	Pololu	110512			
				\$8.95	4	\$36
	Pololu 298:1	Pololu				
	Micro Metal					
Arm	Gear Motor			\$16.95	4	\$68
	Shafts, Bearings,	Misumi	Various			<u>·</u>
	Chain, Sprocket					
	and Misc.					
	Hardward			\$270	1	\$270
	¹ / ₄ " ABS Plastic	Interstate		φ270	1	ψ210
		Plastics				.
	X X X X X X X X X X			\$15.00	4	\$60
Communications	Verizon Wireless Service	Florida State				
	Service	University IT				
		Services		\$60.00		
				/month	3 months	\$180
TOTAL						\$734


PROJECT SUMMARY

Competition Status	Not selected to participate 2014 Robo-Ops competiti	on
	Switch to back up plan	
Extraction	Created a 4 DOF Robotic Arm with simple Haptic Con	itrol
Module -	Created Elastically Compliant Gripper	
Communication	Established Stable Connection with single network	
-	Upgraded Bandwidth with Verizon 4G Network	
Rover	Improved locomotion control (turn while walking/Stai climbing)	r
Locomotion	Dynamic control (Xpadder/getch())	
Future plans	Further Integration and Debugging of all Components	
	Create formal recommendations for future team	
4/24/2014	Group 11 : Robo Ops Ja	son Brow

References

- http://www.maxonmotorusa.com/maxon/view/product/motor/dcmotor/re/re40/148867
- http://www.robotshop.com/en/pololu-298-to-1-micro-gear-motor-hp.html
- http://www.tp-link.us/products/details/?categoryid=1678&model=TL-ER6020
- http://www.britannica.com/EBchecked/topic/182081/elastomer#ref625240
- http://mars.nasa.gov/msl/mission/instrumentms/environsensors/rems/
- http://creativemachines.cornell.edu/jamming_gripper
- http://wpirover.com/category/robo-ops/
- http://robotics.cs.uml.edu/home/news/single-news-article/article/nasa-rasc-al-robo-ops-2013-competition-umass-lowell-rover-hawks-video/
- http://www.tp-link.us/products/details/?categoryid=1678&model=TL-ER6020
- http://raspberrypi.stackexchange.com/questions/1976/alternatives-to-raspberry-pi
- http://www.tp-link.us/products/?categoryid=202
- http://www.raspberrypi.org/

Question/Comment?

30

4/24/2014

Group 11 : Robo Ops

Project Schedule

Task Name	Start	Finish	tember October November December January February March April	May
Fundrasing	Fri 9/20/13	Fri 5/2/14	9/8 9/15/9/22/9/29 10/6 0/1 0/2 0/2 11/3 1/1 1/1 1/2 1/2/11/2/8 2/1 2/2 2/2 1/5 1/12 1/19/1/26 2/2 2/9 2/16/2/23 3/2 3/9 5/16/3/233/30 4/6 4/	134/204/27 54 5/11 5/1
_				
Locomotion Controls	Mon 9/23/13	Fri 2/28/14	•	
Tum While Walking	Mon 9/23/13	Fri 2/28/14		
Turning while climbing	Mon 9/23/13	Fri 2/28/14		
Control with and Xbox	Fri 10/25/13	Fri 2/28/14		
Sample Extraction Module	Mon 9/23/13	Mon 3/24/14	•	
Gripper	Mon 9/23/13	Mon 3/24/14		
Brainslorming	Mon 9/23/13	Fri 9/27/13		
Prototyping Cardboard Stage	Mon 9/30/13	Fri 10/25/13		
Selection of Final Design	Mon 10/21/13	Fri 10/25/13		
Determine Parts Necessary	Mon 10/28/13	Fri 11/22/13		
Complete CAD Model	Mon 10/26/15	Fil 11/22/13		
Construction	Mon 11/25/13	Mon 1/20/14	*_	
Attachment to Arm	Mon 2/24/14	Mon 2/24/14	4	
Tesling Gripper	Tue 2/25/14	Mon 3/24/14		
SEM Mechanism	Mon 9/23/13	Fri 3/21/14	•	
Brainstorming	Mon 9/23/13	Fri 9/27/13		
Prototyping - Cardboard Stage	Mon 9/30/13	Fri 10/25/13		
Selection of Final Design	Mon 10/21/13	Fri 10/25/13		
Determine Parts Necessary	Mon 10/28/13	Fri 11/22/13		
Complete CAD Model	Mon 10/28/13	Mon 1/20/14		
Construction	Tue 1/21/14	Fri 2/21/14		
Tesling SEM System	Mon 2/24/14	Fri 3/21/14		
Communication	Mon 9/23/13	Mon 3/17/14	▼	
Develop Communications Design	Mon 9/23/13	Fri 10/18/13		
Determine Necessary Components	Mon 10/21/13	Fri 11/8/13		
Acquire Necessary Components	Wed 1/15/14	Tue 1/28/14		
Build Communication System	Wed 1/29/14	Mon 2/17/14	 ,	
Test and Debug Communications	Tue 2/18/14	Mon 3/17/14		
Complete System Integration -	Tue 3/25/14	Mon 5/19/14		