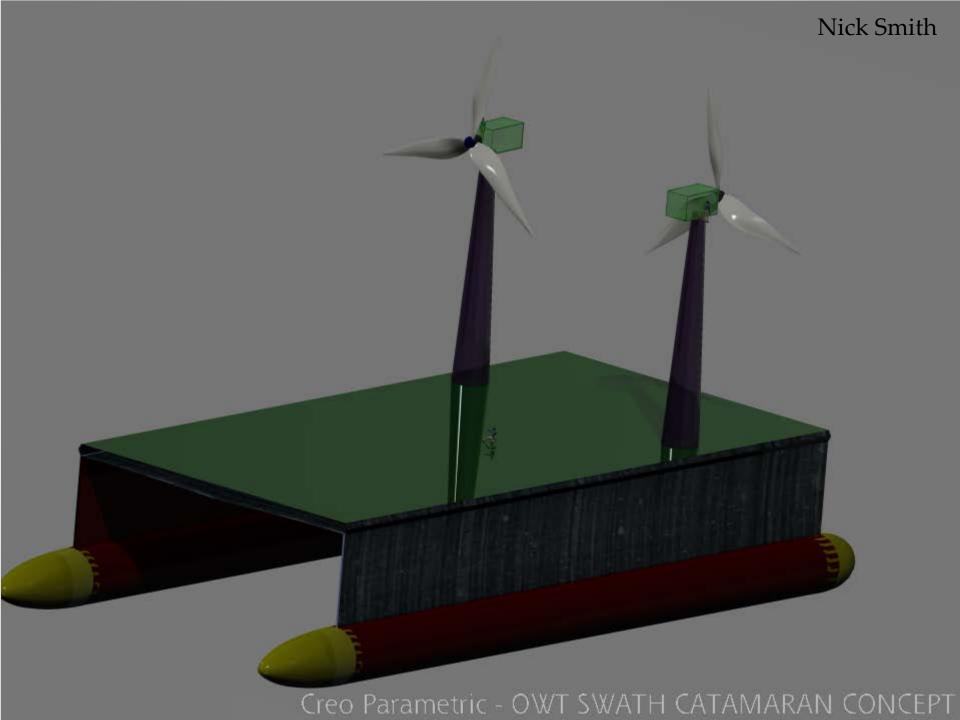
Midterm Presentation 2: Offshore Wind Turbine

Kevin Foppe
Stephen Davis
Mark Price
Nicholas Smith
Matthew Robertson
Sponsor: Jung
11-12-13

Overview

- Brief Review
- Final design selection
- Technological Approach
- Procurement of Material/ Manufacturing
- Future Plans and Possible Modifications

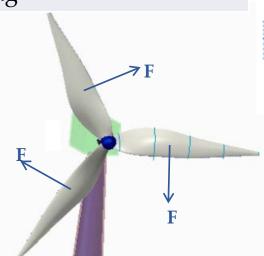

Brief Review

- The Floating Wind Turbine team has been tasked with designing the following:
- An innovative original way of designing a floating wind turbine for use in commercial power production.
- Cost reduction of the design is the main focus.
- Ideation and innovation has become the priority.
- The current design uses autonomous guide technology and a self erecting tower to give the design turn key capability.
- Combining these concepts will allow the turbine to be launched from port and make its way to a predetermined destination where it will begin producing utility scale power without needing manpower for installation.

Final Design

- Catamaran Style Foundation
- Two 20m tall turbines
- 100 kW output
- The following slides will show analysis on towers, blades, thrusters, generators, and foundation.

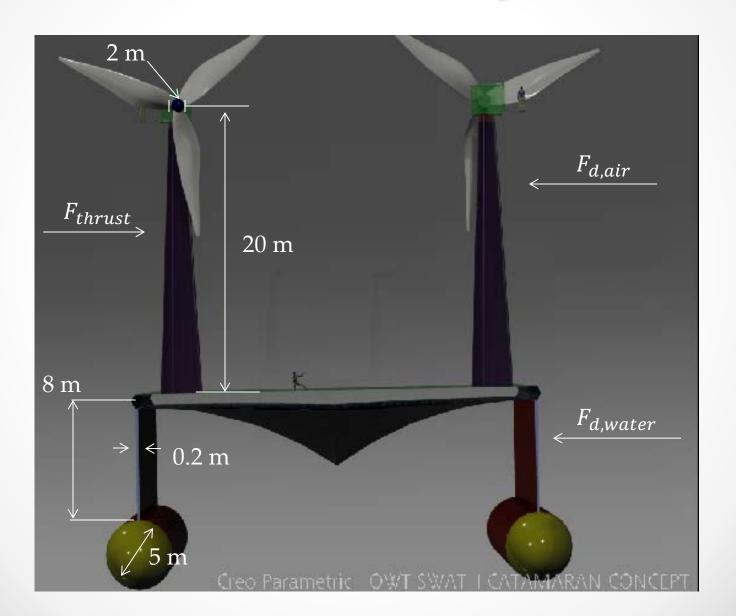
Turbine Blade Details


Three-Blade Configuration

Property	Value
Max rotational speed	19 rpm
Blade composition	Epoxy glass fiber + carbon fiber
Length per blade	9 m
Mass per blade	1,200 kg

Blade Forces

Force	Design
214 N	Per one blade
642 N	Per three blades


Generator

- Power Output 100 Kw
- Start up speed 3 m/s
- Max wind speed 25 m/s
- Rated rotational speed 50 rpm
- Optimal wind speed 12 m/s
- Survival speed 40 m/s
- Weight 2400 Kg

wer Output Power Output (kW) 25 100
25 100
100
225
300
500
600
750
1000
1500
2000
2500

Sources: Danish Wind Industry Association, American Wind Energy Association

Thrust Analysis

Analysis/Calculations

For $F_{d,air}$

$$F_{d,air} = \frac{1}{2} C_d v^2 A_c p_{air}$$
 $p_{air} = 1.23 \frac{kg}{m^3}$ $C_d = 0.5$ $v = 4.5 \frac{m}{s}$

 $A_c = A_{tower} + A_{blades}$

 $A_c = 2(Tower\ Height\ *\ Tower\ Width) + 2(\%Blade\ in\ Sweep\ Area)$

 $A_c = 2(20m * 2m) + 2[0.1\pi(10m)^2]$

 $A_c = 142.8 \, m^2 \approx 145 \, m^2$

Therefore, $F_{d,air} = 903 \text{ N} \approx 905 \text{ N}$

Calculations Cont'd

For Fwater

$$F_{water} = \frac{1}{2}C_{d}v^{2}A_{c}p_{water} \quad p_{water} = 1000 \frac{kg}{m^{3}} \qquad C_{d} = 0.295 \qquad v = 4.5 \frac{m}{s}$$

$$A_{c} = A_{pontoon} + A_{structure}$$

$$A_{c} = 2\left[\left(\frac{\pi(5m)^{2}}{4}\right) + (0.2m)(8m)\right]$$

$$A_{c} = 42.5 m^{2}$$

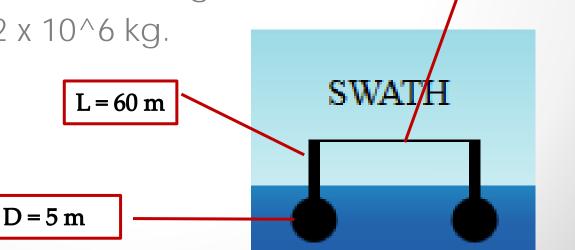
Therefore,

$$F_{water} = 126,942 \text{ N} \approx 127 \text{ kN}$$

$$F_{thrust} = F_{air} + F_{water} \approx 128 \, kN$$

$$Power = \frac{Energy}{time} = \frac{J}{S} = \frac{N*m}{S} = F_{thrust} * v$$

Power Required = $(128 \text{ kN}) \left(4.5 \frac{m}{s}\right) = 575 \text{ W} \approx 770 \text{ hp} \approx \text{Two } 385 \text{ hp Motors}$


Project Procurement

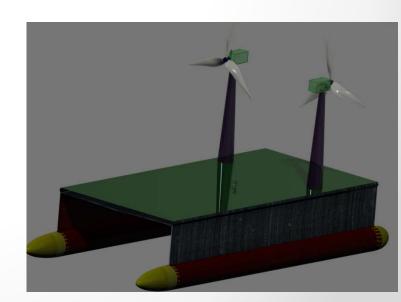
- No long lead items
- Smaller model size Tabletop
- Going forward, 3-D print blades
 - Complex geometries

W = 30 m

Foundation

- Small-Waterplane-Area Hull (SWATH)
- L:W ratio = 2:1
- Displacement Mass: Foundation Mass 2:1
- Buoyancy = (Mass of Displaced Fluid Mass Structure)
- Displaced Fluid = 2.4 x10⁶ kg.
- Foundation = 1.2 x 10⁶ kg.
- Ballasted Hulls

Manufacturing Process: Full Scale


- Pontoon Sections
- Thruster and Steel Components (Supporting Structure) will be imported and built offsite
- Fiberglass components (Visual Structure)
- will be cast on site
- Stream Line Assembly will occur in Dry Dock

Manufacturing Process: Small Scale

Approximately 1/60 scale

- Hull 3D Printer
- Tower- utilize piping from home depot
- Blades 3D Printer
- Generator Buy from
- Thruster will be bought from hobby shop
- Sealer/Friction Reducer/ Rust preventative

Nick Smith

Technological Approach to Design

- Hardware/Software
 - AutoCAD
 - Creo
 - ComSol
 - Code Warrior
 - GPS
 - Motorcontroller
 - Basic Computer
 - USB interface

Challenges

- Making sure it floats and maintains its upright position.
- Material selection.
 - -Strength to weight
- Cost effectiveness.
- The autonomous aspect will be developed with the assumption that technology will advance and become more viable and eliminate future designs from reliance on mooring lines.

Future Plans

- Possible concepts include
 - Autonomous
 - Programming controllers
 - Self Erecting Tower
 - Market Needs
 - Motor Selection

References

- 1) "Value Breakdown for the Offshore Wind Sector." A Report Commissioned by the Renewables Advisory Board. Feb. 2010
- 2) "Vertical Axis Wind Turbines vs Horizontal Axis Wind Turbines." *Small Wind Tips RSS.* N.p., Jan. 2013. Web. 21 Oct. 2013.
- 3) "Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform, with a Comparison to Other Floating Turbine Concepts" Matha, Denis. NREL: Wind Research Home Page. University of Colorado-Boulder, Feb. 2010. Web. 22 Oct. 2013. http://www.nrel.gov/wind/.

Questions

