Team 7: Microalgae Photobioreactor Final Presentation

Stephen Kassing, Diego Soler, Markus Dillman, Matthew Vedrin

Project Advisors:

Dr. Juan Ordonez (Department of Mechanical Engineering, FSU) Dr. José Vargas (Department of Mechanical Engineering, UFPR)

Stephen Kassing

Presentation Outline

Microalgae for Photobioreactor Mini Airlift Photobioreactor Design Algae Growth Equations Why Semi-Continuous System? Concentration/Mass Flow Sensor Addition/Extraction Unit Design Mechatronic Control Design Future Plans Conclusion

Microalgae for Photobioreactor

- Algae use photosynthesis to convert solar energy to chemical energy

 Store this energy in forms of carbohydrates and proteins
- Chlorella Vulgaris has higher concentration levels and will be used to fill
 the photobioreactor

Scenedesmus

Chlorella Vulgaris

Stephen Kassing

Current Photobioreactor at FSU

- **Current System**: Pump Operated Closed Batch Photobioreactor
 - Requires lots of manual labor and very time consuming!
- Objective: Make modifications to this system to make it semicontinuous
- **Plan**: Implement UFPR/FSU Semicontinuous design into the old system

Photobioreactor (Previous Year)

Semi-Continuous Airlift Photobioreactor

- Uniform flow rate throughout system
- Pump is optional for cleaning or other experiments
- Implements all units and sensors

Algae Growth Section

Stephen Kassing

Airlift Sensor and Unit Port Section

Algae Growth Equations (Matthew Vedrin)

Stephen Kassing

Algae Growth Equations

- Batch System Analysis (Exponential Growth)
 - Idealized: No limiting factors (i.e. sufficient light, food, gas exchange, etc.)
 - Real: Clouds, rain, imperfect gas exchange

$$X = X_0 e^{kt} \longrightarrow X_t = X_0 e^{mt} \longrightarrow m = \ln(X_t / X_0) / t$$

Physical significance of specific growth rate: rate of change in concentration over concentration

 $X_0 \circ$ Initial concentration = [g/L] $t \circ$ Time = [h] $dX \circ$ Differential change of concentration = [g/L] $X_t \circ$ Concentration at time, t = [g/L] $m \circ$ Specific growth rate = $[h^{-1}]$ $dt \circ$ Differential change of time = [h]

Matthew Vedrin

Algae Growth Equations

• Continuous System Analysis (Mass Balance)

Net increase in biomass = Growth - Biomass removal

VdX = VmXdt - FXdt

Steady State

 $\frac{dX}{dt} = 0 \longrightarrow \mathcal{M} = D$

Transient State

 $\rightarrow \frac{dX}{dt} = mX - \frac{F}{V}X = (m - D)X$

$$\frac{dX}{dt} = (m - D)X$$

$$\mathcal{M} = \frac{dX/dt}{X} = (\mathcal{M} - D)$$

 $dx \circ Differential$ change of concentration = [g/L] $dt \circ Differential$ change of time = [h]

Matthew Vedrin

 $V \circ Total volume = [L]$ $M \circ Specific growth rate = [h^{-1}]$ $X \circ Concentration = [g/L]$ $F \circ Addition rate = [L/h]$ $D \circ Dilution rate = [h^{-1}]$

Why Semi-Continuous System Over Continuous?

- Original Concept: Fully automated and continuous system to improve growth of algae
- Semi-Continuous System: Addition and extraction does not happen continuously but periodically

Cons of a Continuous System

- Very complex design and research needed
- Variable speed pump and computer controlled valves are expensive and outside our budget
- The optimal concentration for operation is still unknown

Diego Soler

Addition/Extraction Unit Control

Example Dilution Process for 24 Hours

- Target addition/extraction concentration: N_h = 800
- Target post-dilution concentration: N_0 = 500

<u>Day</u>	Time of Day	Measured Concentration 1 (N t1)	<u>Dilute?</u>	Measured Concentration 2 (N t2)	<u>Notes</u>	
1	08:00 AM	500	NO	500	System Start	
1	10:00 AM	650 non- linear	NO	650	Low concentration	
1	12:00 PM	850	YES	500	Target conc. & sufficient growth rate	
1	02:00 PM	600	NO	550	Low concentration	
1	04:00 PM	750	YES	500	Close to target conc. & high growth rate Cloudy for past 2 hours	
1	06:00 PM	550	NO	550		
1	08:00 PM	615	NO	615	Light intensity is down	
1	11:00 PM	675	NO	675	Night growth	
1	3:00 AM	715	NO	715	Night growth	
1	6:00 AM	765	NO	765	Close to target conc. but insufficient growth rate	
	08:00 AM	800	YES	500	Target conc. & sufficient growth rate	
U JUIE						

11

Mass Flow Sensor

 Mass flow is measured using a basic thermodynamic property which correlates heat input to mass flow rate and the equation is below:

$$\dot{m} = \dot{Q} / (C_p * \Delta T)$$

Concentration Sensor

- LED's emit light through the PVC pipe to a sensor on the other side of the pipe
- This sensor's resistance varies with the amount of light and is converted to voltage
- Calibration: comparison tests from counting the algae under a microscope and correlating it to the resistance recorded from light sensor.

Addition Unit Design Concept

- Media storage container is located above pump to maintain minimum required pressure head to avoid cavitation
- Pipe network from pump to photobioreactor will contain valves with major and minor head loss which create pump resistance
- Pumping pressure must be higher in the pump than in the photobioreactor to obtain flow into the system
- These head losses can be plotted and match up with the pump curve to find the operating point for the addition unit
- The algae food storage tank will have buoy with distance sensor to determine how much volume has entered the photobioreactor
- Distance sensor will also tell us when we reach the minimum volume inside the unit or when the storage tank needs to be refilled

Addition Unit Operating Diagram

Markus Dillman

Materials For Addition/Extraction Unit

Calculations for Addition Unit Design				Extraction Unit			
		Qtv	Cost				
General Materials	PVC Cement Glue	1	\$3.67				
			1.5.5	Overflow	4x4x1 in T		
		subtotal	\$3.67	System	connection	1	\$15.79
Addition Unit	* Size 1 NPT						
Major Components					PVC Straight Pipe		
Pipe network from pump to PBR	PVC Straight Pipe (10ft, 1 in D)	1	\$3.49		(10ft, 1 in D)	1	\$3.49
P = P =	PVC union	1	\$4.96				
	90 deg connections (5pk)	1	\$2.97				
	solenoid valve (automatable)	2	\$50.00				
	check valve	1	\$8.95				
	end cap (5pk)	1	\$2.53		5g Water Jug	1	Ş20.00
		subtotal	\$72.90			subtotal	\$39.28
Pipe network from food storage							
to pump	1in adapter	2	\$0.66				
	PVC union	1	\$4.86				
	PVC Straight Pipe (10ft, 1 in D)	1	\$3.49				
	1/2 in adapter	1	\$0.46				
	distance sensor	1	\$12.99				
	1 1/2 pvc straight pipe (10ft)	1	\$5.16				
	5g Water Jug	1	\$20.00				
		subtotal	\$47.62			TOTAL	\$163.47

Airlift CAD Drawings

Airlift Photobioreactor Unit (all units in mm)

Markus Dillman

Airlift CAD Drawings

Sensor and Units Port Section (all units in mm)

Markus Dillman

Future Plans (Spring Semester)

 WEEK 4: Test Unit and Calibration of Concentration Sensor Completed

✓ WEEK 6: Control/Communication Design Complete

✓ WEEK 6: All parts for new airlift photobioreactor with unit prototypes (CAD) and purchase orders completed

✓ WEEK 8: All parts for new units arrive at FSU

 WEEK 9: New airlift photobioreactor built and perform first water test

Future Plans (Spring Semester)

- WEEK 9: Control/Communication Purchase forms complete and submitted
- WEEK 10: SPRING BREAK
- WEEK 13: Algae placed in airlift photobioreactor and testing started
- WEEK 14-15: Troubleshoot and evaluate test results

Questions?