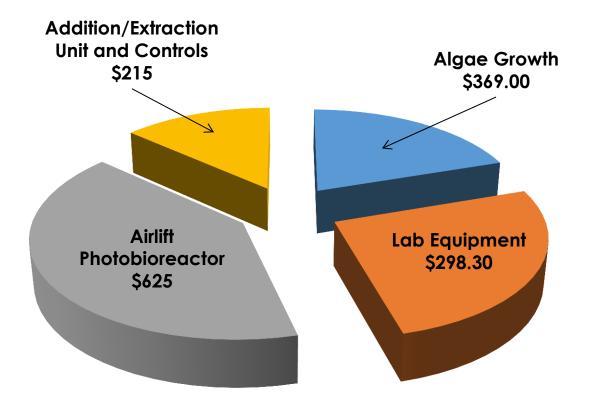
Airlift Photobioreactor, Team 7 Final Presentation

April 17, 2014

Stephen Kassing, Markus Dillman, Matthew Vedrin

Project Advisors:


Dr. Juan Ordonez (Department of Mechanical Engineering, FSU) Dr. José Vargas (Department of Mechanical Engineering, UFPR)

Presentation Outline

- Budget and Expenses
- Background and Objective
- Microalgae Growth
- Semi-Continuous Growth Curves
- Excising Photobioreactors
- What is an Airlift Photobioreactor?
- Our Photobioreactor Design
- > Controls
- Addition and Extraction
- Future Improvements and Questions

Budget and Expenses

Background

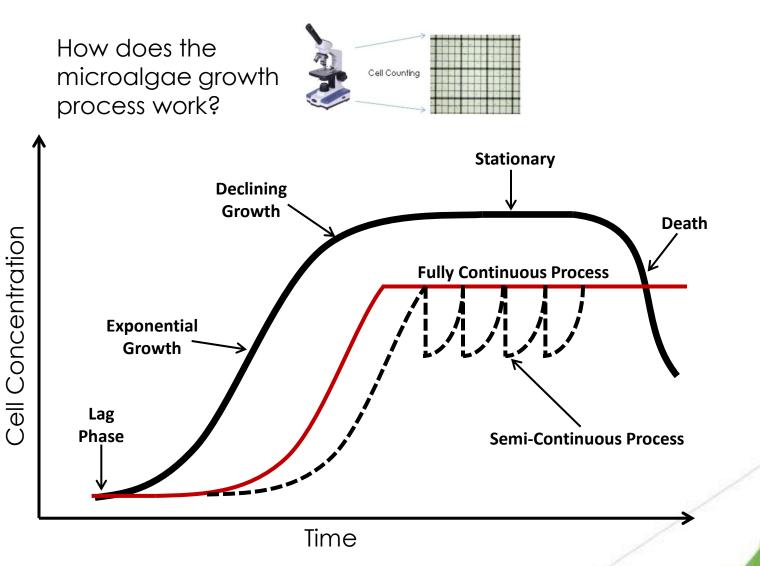
Ultimate Goal = Biofuel

Microalgae \longrightarrow Biomass \longrightarrow Biofuel

Objectives

The customer needs a way to transform an airlift photobioreactor's current "batch" growth systems into a "semi-continuous growth system."

To accomplish this team 7 must:


- Grow and maintain a microalgae culture for design project experimentation
- ✓ Improve and modify last year's concentration sensor
- ✓ Design and build a prototype-scale airlift photobioreactor
- Design and develop fully automated addition/extraction units

Microalgae Growth

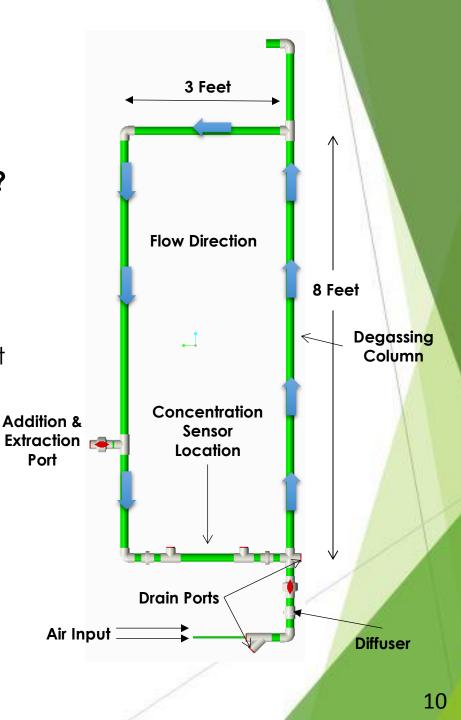
- Chlorella Vulgaris Microalgae
 - Resistant properties, optimal growth temperatures, low or high light growth levels
- Approximately 30L of Microalgae has been grown throughout the school year
 - Enough to fill the photobioreactor with some reserves leftover for further testing.
- Algae growth curves have been produced this semester to log the cell concentration and growth.

Microalgae Growth

Microalgae Growth on a Small Scale

Microalgae Growth on a Large Scale

Large-Scale Growth Photobioreactors


25L Airlift Photobioreactor used in Brazil

Main Commercial 10,000L Photobioreactor in Brazil

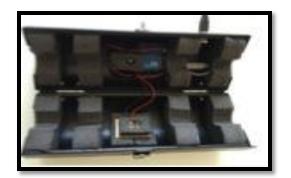
Airlift Photobioreactor

- What is an airlift photobioreactor?
 - A photobioreactor is container that grows living organisms using light
 - An airlift operated photobioreactor circulates the water using compressed air input and requires no pump operation
- Benefits of Airlift ?
 - Successful operation from Brazil.
 - Less water hammering
 - More energy efficient

Markus Dillman

Current Airlift Design

What does our Photobioreactor look like today?
Design maximizes area exposed to sunlight.
Video time!


Markus Dillman

Controls – Overview

Batch operation: manual labor is reasonable

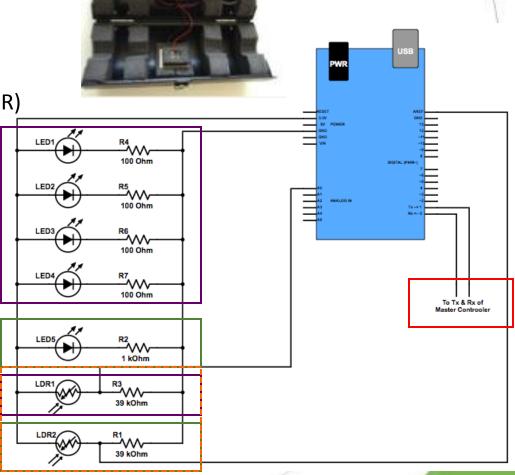
Semi-continuous operation: manual labor is not reasonable

Conclusion: Automated control systems needed

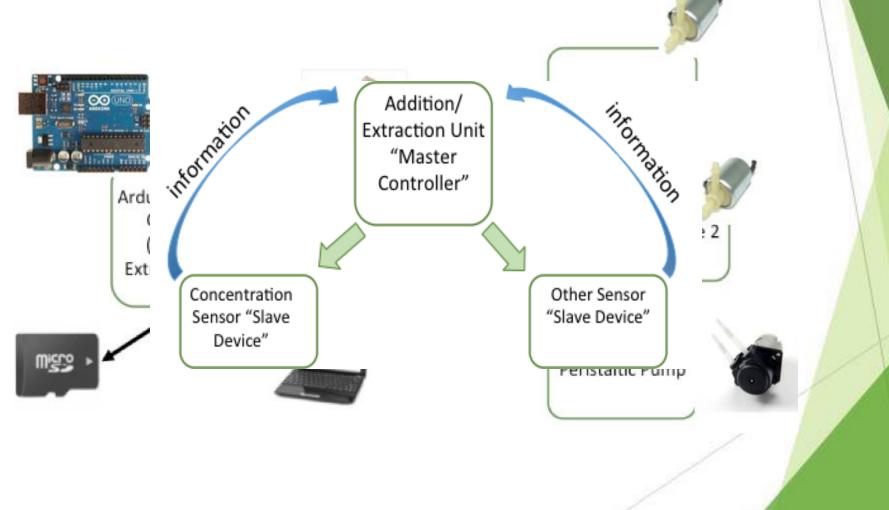
Concentration

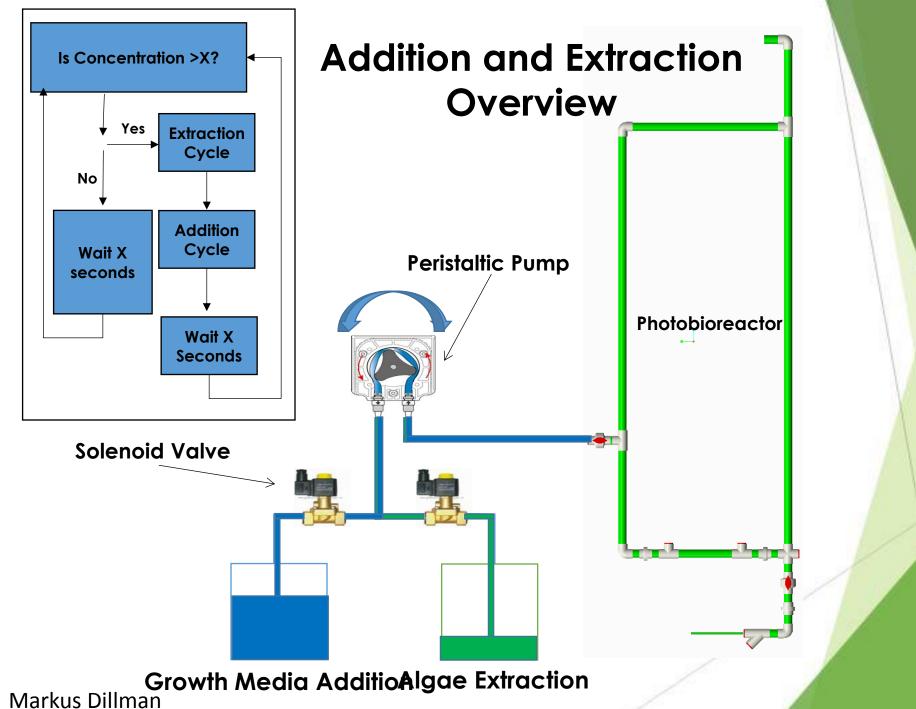
Addition/Extraction

Controls – Concentration Sensor


<u>Review</u>

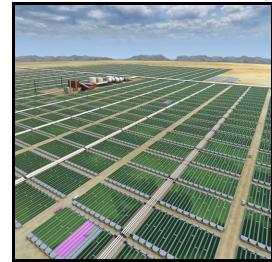
Electrical Components:


- Light Emitting Diode (LED)
- Light Dependent Resistor (LDR)
- Resistors


Main Sections:

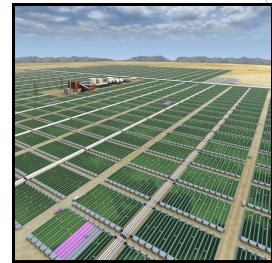
- Control
- Test
- Wheatstone Bridge
- Communication

Controls – Communication & Control Flow



Addition and Extraction Demo

Project Results


- Successfully cultivated microalgae for project experiments using growth methods from Brazil.
- ✓ Designed and constructed automated addition/extraction unit controlled by an Arduino Uno microcontroller
- ✓ Improved concentration sensor's datalogging capabilities via serial communication with addition/extraction unit
- ✓ Designed and assembled working airlift photo-bioreactor based on previous designs at UFPR

Markus Dillman

Future Improvements

- ✓ Research alternative algae growth media
- ✓ Further develop non-invasive mass flow sensor
- Research and develop continuous addition/extraction system
- Create a large scale system capable of increasing the production of microalgae
- ✓ Optimization of algae growth using automated sensors and addition/extraction system

Project Learning

- Cross-disciplinary work (biology, mechatronics, mechanical systems, CAD design)
- \checkmark International collaboration and communication
- \checkmark Teamwork and group dynamics
- ✓ Advisor meetings
- ✓ "Hands on"
- ✓ Project management

Any Questions?

Algae Growth Equations

- Batch System Analysis (Exponential Growth)
 - Idealized: No limiting factors (i.e. sufficient light, food, gas exchange, etc.)
 - Real: Clouds, rain, imperfect gas exchange

$$X = X_0 e^{kt} - \cdots > X_t = X_0 e^{mt} - \cdots > m = \ln(X_t / X_0) / t$$

Physical significance of specific growth rate: rate of change in concentration over concentration

 $X_0 \circ$ Initial concentration = [g/L] $t \circ$ Time = [h] $dX \circ$ Differential change of concentration = [g/L] $X_t \circ$ Concentration at time, t = [g/L] $m \circ$ Specific growth rate = $[h^{-1}]$ $dt \circ$ Differential change of time = [h]

Algae Growth Equations

Continuous System Analysis (Mass Balance)

Net increase in biomass = Growth - Biomass removal

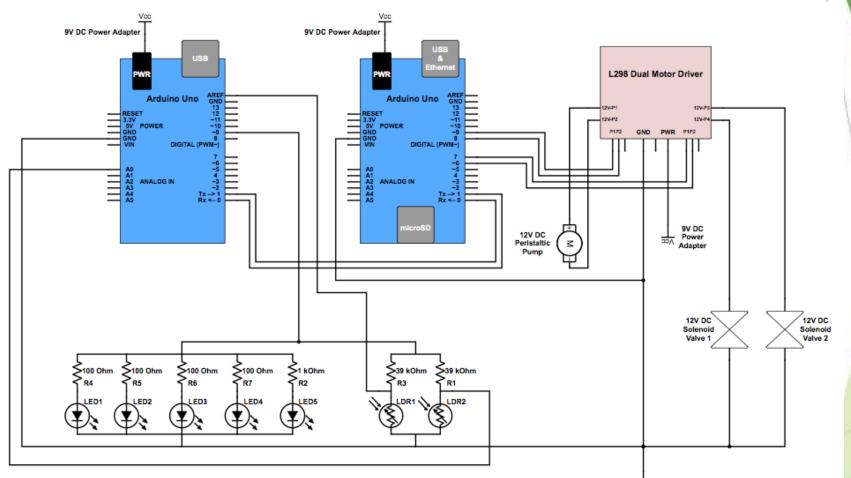
 $VdX = VmXdt - FXdt \longrightarrow \frac{dX}{dt} = mX - \frac{F}{V}X = (m - D)X$

Steady State

 $\frac{dX}{dt} = 0 \longrightarrow \mathcal{M} = D$

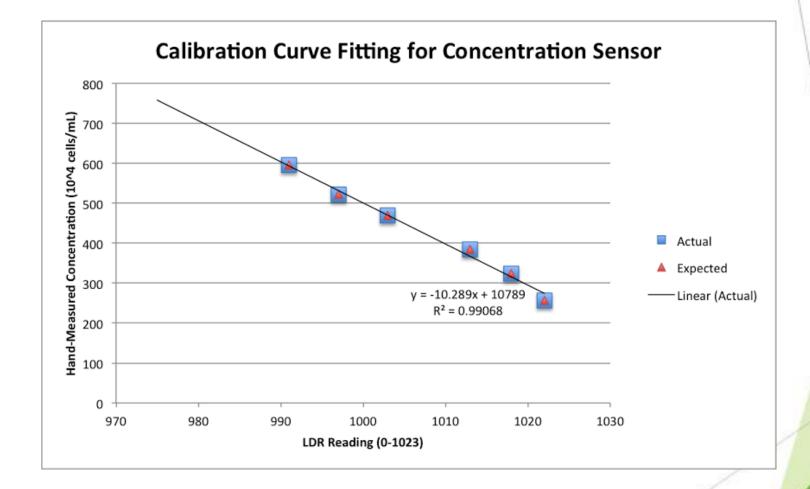
Transient State

$$\frac{dX}{dt} = (m - D)X$$


$$\mathcal{M} = \frac{dX/dt}{X} = (\mathcal{M} - D)$$

 $dx \circ Differential change of concentration = [g/L] \quad V \circ Total volume = [L]$ $dt \circ Differential change of time = [h] \qquad m^\circ Specific growth rate$

Matthew Vedrin


 $V^{\circ} Total volume = [L]$ $M^{\circ} Specific growth rate = [h^{-1}]$ $X^{\circ} Concentration = [g/L]$ $F^{\circ} Addition rate = [L/h]$ $D^{\circ} Dilution rate = [h^{-1}]$

Control Diagram

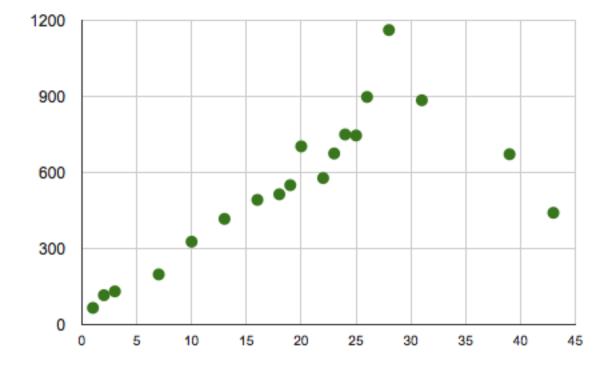
÷

Concentration Sensor Calibration

Biomass/Biodiesel Production

- PBR production capability (from Brazil): 1 8 g/L/day biomass
- Our unit (theoretical): 9 72 g/day biomass for 9L Airlift
- At 40% lipid content \rightarrow 3.6 28.8 g/day oil
- Assume algae density ~920 g/L \rightarrow 0.004 0.031 L/day

PROGRAM SECTION	MASTER CONTROLLER (ADDITION/EXTRACTION UNIT)	SLAVE CONTROLLER (CONCENTRATION SENSOR)
Setup (reset button or power-	(12211101)	(00110010010)
up)		
	Initialize variables and input/output pins	Initialize variables, input/output pins,
Data Acauisition Phase		and onboard hardware (microSD)
Data Acquisition Phase	Send command character, "b" for "begin", to	Enter while loop until serial reads
	the slave controller to request concentration	buffer command character "b" from
	data. After sending, enter while loop until serial reads the handshaking character. If no	master.
	response within x seconds, send another	
	character and wait again.	
		One commendation of a series
		Once command is received, send handshaking character, "b" for "begin",
		back to master to indicate that it is
		ready to send data.
	Receive the handshaking character, "b", from	Short delay
	the slave controller and enter while loop to continuously check serial buffer for	
	concentration data. If waiting for more than	
	x seconds, return to beginning of "Data	
	Acquisition Routine"	
	Receive measurement and immediately save	Enter data acquisition process: take
	it into a data file on an onboard microSD	concentration measurements. Send each
	card.	measurement to master as it is taken.
	While in while loop waiting for data: if	When finished taking concentration
	receive an "e" command from slave, leave the	measurements, send command
	data acquisition while loop and calculate	character, "e" for "end", to master
	average of all measurements recently received.	indicating data acquisition is finished.
	Input average value into concentration	Return to while loop at beginning of
	calibration equation. If average	"Data Acquisition Phase" to wait for
	concentration is greater than or equal to	next data request from master.
	target value, enter "Addition/Extraction	
	Phase". If average concentration is less than target value, pause for a short duration and	
	then return to the start of the "Data	
	Acquisition Phase"	
Addition/Extraction Phase	Sends a digital 5V signal to the motor driver,	
	which holds open the extraction solenoid	
	valve. Then pause for a short time to ensure	
	the extraction valve opens before pump	
	operation. Send a second digital 5V signal to the motor	
	driver, which corresponds to operating the	
	peristaltic pump in the "extraction" direction	
	of flow.	
	Return the digital signal that controls the pump back to 0V, pause for a short duration,	
	then return the digital signal that controls	
	the extraction solenoid valve to 0V to close	
	the valve.	
	Wait for a short duration and then repeats	
	steps above for the addition valve and "addition" direction of the pump.	
	Exit "Addition/Extraction Phase", pause for a	
	short duration, then return to the beginning	
	of "Data Acquisition Phase"	


Program Process Flow

Arduino Program Codes

- <u>Text of Addition/Extraction Program</u>
- Text of Concentration Program

Experimental Algae Growth Curve

Chlorella Vulgaris Cell Concentration (Spring)

Cell Count (10^{v4} cells/mL)

Day #