Team 7: Microalgae Photobioreactor Midterm 2 Presentation

UNIVERSIDADE FEDERAL DO PARANÁ

Stephen Kassing, Diego Soler, Markus Dillman, Matthew Vedrin

Project Advisors:

Dr. Juan Ordonez (Department of Mechanical Engineering, FSU) Dr. José Vargas (Department of Mechanical Engineering, UFPR)

Presentation Outline

Mini Airlift Photobioreactor Design Algae Growth Equations Why Semi-Continuous System? Addition/Extraction Unit Design Mechatronic Control Design Question?

Current Photobioreactor at FSU

- **Current System**: Pump Operated Closed Batch Photobioreactor
- **Objective**: Make modifications to the previous system to make it semi-continuous or fully continuous
- **Plan**: Implement UFPR/FSU Semicontinuous design into the old system

Photobioreactor (Previous Year)

Semi-Continuous Airlift Photobioreactor

- Airlift Operating Photobioreactor
- Uniform flow rate throughout system
- Pump is optional for cleaning or other experiments
- Implements all units and sensors

Algae Growth Section

Airlift Sensor and Unit Port Section

Algae Growth Equations (Matthew Vedrin)

Algae Growth Equations

- Batch System Analysis (Exponential Growth)
 - Idealized: No limiting factors (i.e. sufficient light, food, gas exchange, etc.)
 - Real: Clouds, rain, imperfect gas exchange

$$X = X_0 e^{kt} \longrightarrow X_t = X_0 e^{mt} \longrightarrow m = \ln(X_t / X_0) / t$$

Physical significance of specific growth rate: rate of change in concentration over concentration

 $X_0 \circ$ Initial concentration = [g/L] $t \circ$ Time = [h] $dX \circ$ Differential change of concentration = [g/L] $X_t \circ$ Concentration at time, t = [g/L] $m \circ$ Specific growth rate = $[h^{-1}]$ $dt \circ$ Differential change of time = [h]

Matthew Vedrin

Algae Growth Equations

• Continuous System Analysis (Mass Balance)

Net increase in biomass = Growth - Biomass removal

VdX = VmXdt - FXdt

Steady State

 $\frac{dX}{dt} = 0 \longrightarrow \mathcal{M} = D$

Transient State

 $\rightarrow \frac{dX}{dt} = mX - \frac{F}{V}X = (m - D)X$

$$\frac{dX}{dt} = (m - D)X$$

$$\mathcal{M} = \frac{dX/dt}{X} = (\mathcal{M} - D)$$

 $dx \circ Differential$ change of concentration = [g/L] $dt \circ Differential$ change of time = [h]

Matthew Vedrin

 $V \circ Total volume = [L]$ $M \circ Specific growth rate = [h^{-1}]$ $X \circ Concentration = [g/L]$ $F \circ Addition rate = [L/h]$ $D \circ Dilution rate = [h^{-1}]$

Why Semi-Continuous System Over Continuous?

- Original Concept: Fully automated and continuous system to improve growth of algae
- Semi-Continuous System: Addition and extraction does not happen continuously but periodically

Cons of a Continuous System

- Very complex design and research needed
- Variable speed pump and computer controlled valves are expensive and outside our budget
- The optimal concentration for operation is still unknown

Addition Unit Design Concept

- Media storage container is located above pump to maintain minimum required pressure head to avoid cavitation
- Pipe network from pump to photobioreactor will contain valves with major and minor head loss which create pump resistance
- Pumping pressure must be higher in the pump than in the photobioreactor to obtain flow into the system
- These head losses can be plotted and match up with the pump curve to find the operating point for the addition unit
- The algae food storage tank will have buoy with distance sensor to determine how much volume has entered the photobioreactor
- Distance sensor will also tell us when we reach the minimum volume inside the unit or when the storage tank needs to be refilled

Addition Unit Operating Diagram

Markus Dillman

Airlift Photobioreactor

Airlift Photobioreactor Unit (all units in mm)

Materials For Addition/Extraction Unit

Calculations for Addition Unit Design				Extraction Unit			
		Qtv	Cost				
General Materials	PVC Cement Glue	1	\$3.67				
				Overflow	4x4x1 in T		
		subtotal	\$3.67	System	connection	1	\$15.79
Addition Unit	* Size 1 NPT						
Major Components					PVC Straight Pipe		
Pipe network from pump to PBR	PVC Straight Pipe (10ft, 1 in D)	1	\$3.49		(10ft, 1 in D)	1	\$3.49
P = P =	PVC union	1	\$4.96				
	90 deg connections (5pk)	1	\$2.97				
	solenoid valve (automatable)	2	\$50.00				
	check valve	1	\$8.95				
	end cap (5pk)	1	\$2.53		5g Water Jug	1	Ş20.00
		subtotal	\$72.90			subtotal	\$39.28
Pipe network from food storage							
to pump	1in adapter	2	\$0.66				
	PVC union	1	\$4.86				
	PVC Straight Pipe (10ft, 1 in D)	1	\$3.49				
	1/2 in adapter	1	\$0.46				
	distance sensor	1	\$12.99				
	1 1/2 pvc straight pipe (10ft)	1	\$5.16				
	5g Water Jug	1	\$20.00				
		subtotal	\$47.62			TOTAL	\$163.47

Mechatronic Control

Diego Soler

Addition/Extraction Unit Control

Example Dilution Process for 24 Hours

- Target addition/extraction concentration: N_h = 800
- Target post-dilution concentration: N_0 = 500

<u>Day</u>	Time of Day	Measured Concentration 1 (N t1)	<u>Dilute?</u>	Measured Concentration 2 (N_t2)	Notes
1	08:00 AM	500	NO	500	System Start
1	10:00 AM	650 – non- linear	NO	650	Low concentration
1	12:00 PM	850	YES	500	Target conc. & sufficient growth rate
L	02:00 PM	600	NO	550	Low concentration
1	04:00 PM	750	YES	500	Close to target conc. & high growth rate
1	06:00 PM	550	NO	550	Cloudy for past 2 hours
1	09:00 PM	615	NO	615	Light intensity is down
1	12:00 AM	675	NO	675	Night growth
1	3:00 AM	715	NO	715	Night growth
1	6:00 AM	765	NO	765	Close to target conc. but insufficient growth rate
2 • • • • • •	08:00 AM	800	YES	500	Target conc. & sufficient growth rate

14

Airlift CAD Drawings

Sensor and Units Port Section (all units in mm)

Airlift CAD Drawings

Airlift Photobioreactor Unit (all units in mm)

Questions?

What is the current flow inside the PBR?					1
			<u>conditions</u>		1
Flow Rate	1	ft^3/min	average guess		1
	0.00047194744	m^3/s			1
Dynamic Visc	0.000798	N*s/m^2	30C	0.001787	0C
Kinem Visc	0.00000801	m^2/s	30C	0.000001787	0C
Density of H2O	995.7	kg/m^3	30C		
Diameter of Tube	0.0127	m			
	3.72560076705				
Velocity	867	m/s			
	59070.0745838			26477.408920	Still
Re	265	*Turbulent		8982	Turbulent
	37.5094973607				
Entry Length (lam)	298	m	Not applicable		
Entry Length (turb)	0.127	m			
e/D	0		pvc = smooth		
	0.01995783633			1	
f	3899		colebrook approx		