

Sealing Ring Testing and Characterization Team 1

Richard Edgerton, Emilio Kenny, Kenneth McCloud, Tawakalt Akintola, and Erin Flagler

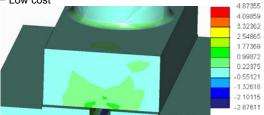
PURPOSE

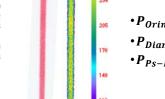
Develop a method that will reduce time and effort needed for irregular sealing ring design by providing an approximate starting point for finite element analysis used during the design process.

MOTIVATION

Current test procedures for elastomeric materials utilize standardized test samples and do not give insight into how irregular cross sectional shapes behave under compression.

OBJECTIVES

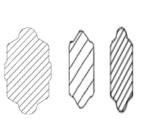

- Define a shape factor that correlates the geometry of a seal ring cross section with the sealing pressure at a given percent crush using MTS machine test fixture below.
- · Develop a user interface that receives parameters of an application and outputs an estimation of the performance of particular seal ring shapes.


TEST FIXTURE

· Designed to be used with existing equipment

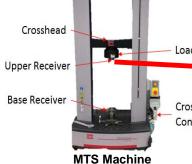
Test Fixture Maximum Stresses (MPA)

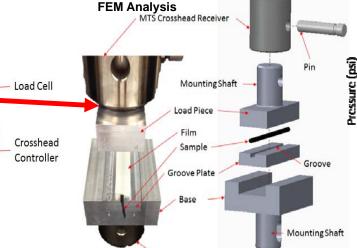
- Material: Aluminum 6061-t6511
- Riaidity
- Machinability
- Low cost


Film After Testing and

Scanning

DATA ANALYSIS


- · Compression tests showed how the deformation of seals under various loads corresponded to sealing pressure using film (right). From this relationship, a correlation was derived and a geometric shape factor can be defined.
- · Correlations between sealing pressure and percent crush (C) were derived for Circular, Diamond and Pseudo-Diamond cross sections using equations below
- • $P_{0ring} = 120.5 \times e^{(0.0458 \times C)}$
- $P_{Diamond} = 68.623 \times e^{(0.0879 \times C)}$
- $P_{Ps-Diamond} = 145.17 \times e^{(0.0719 \times C)}$


Cross-section Relations

Irregular Seal Shapes: Diamond and Pseudo-**Diamond Seals**

MTS Base Mount

Fixture Assembly

1000 900 200 HHITH 700 600 500 400 200 100 10 15 25 30 35 Percent Crush (%) Pseudo-Dlamond -Diamond

TESTING

- Tests performed on MTS machine with custom fixture
- Uniform compression applied to seal samples by load piece
- Samples compressed at intervals of percent crush
- Data Outputs
- Load needed to achieve percent crush
- Sealing pressure measured with pressure sensitive film

FUTURE WORK

- Perform tests and derive correlations for more cross section sizes and geometries.
- Design a fixture that receives grooves that utilize the entire seal and perform analysis
- Further develop user interface