

Cummins Energy Savings

Group Number 2

Daniel Baker, Warren Bell, Daniel Carnrike, Kyle Fields, Marvin Fonseca

Cummins Advisor: Dr. England, Dr. Hays Faculty Advisor: Dr. Ordonez Instructors: Dr. Gupta, Dr. Shih 4/16/15

Group 2

Slide 1 of 40

Daniel Carnrike

<u>Outline</u>

- Background
- Project Scope
- Alternative Methods Investigation
- Organic Rankine Cycle (ORC) Design Overview
- ORC Component Design and Selection
- Simulation Interface and Development
- Conclusion
- Closing Remarks

Background

- Cummins aims to reduce their annual energy consumption by 10% at the Cummins Technical Center (CTC).
- Research, Testing, and Development Center
- Cummins uses 20,000 gallons of diesel fuel a year at the facility in engine testing.
- Energy Saving Ideas
 - Chillers
 - Solar Panels
 - Wind Turbines
 - Organic Rankine Cycle
 - Insulation Effects (Already Optimized)

Slide 3 of 40

Project Scope

Provide an engine exhaust capture system design and simulation supplemented with other energy saving ideas that will assist in decreasing the overall energy usage at the Cummins Technical Center.

Variable Absorption Refrigeration System (VARS) v. Variable Compression **Refrigeration System (VCRS)**

Solar Panels

Wind Turbines

Selection

	PITCH CONTROLLER	Option	Initial Capital Cost	Mass (kg)	Weight (Ibs.)	Weight (tons)
CENERATOR -	BLADE JOINT ROTOR	1	\$1,283,653.25	433,494	953,688	476
		2	\$1,299,030.00	489,559	1,077,031	538
	ROTOR SHAFT	3	\$1,282,944.32	619,748	1,363,445	681
	LTOWER	4	\$1,338,944.32	615,124	1,353,274	676

Option 1: three-stage drive with a high speed generator

Option 2: single stage drive with medium speed, permanent magnet generator

Option 3: multi path drive with multiple permanent magnet generators

Option 4: direct drive turbine

Slide 7 of 40

Group 2

Warren Bell

Wind Turbines

Analysis

Implementation

			ФС <u>074</u> 40
Power Generated	297.72 kW	Annual LRC	\$6,371.18
Annual Energy Generated	9388.85 GJ/year	Operation and Maintenance	\$36,512.49
Annual Energy Generated	2,608,035 kWh/year	Shipping	\$26,757.09
Revenue Annual	\$221,682.98/year	Installation and	\$51,054.80
25 year ROI (\$)	\$3,050,701.28	Engineering and	\$12,269.54
Years to Return	7.94 years	Control, safety,	\$70.000
		monitoring	÷ • ; • • •

Slide 8 of 40

Group 2

Warren Bell

Summary of Alternative Methods and Exhaust Gas Potential

- Potential Savings in Exhaust Gases
- Discussed at the end of Fall 2014
- Decided Organic Rankine Cycle
- Spring 2015 spent designing, analyzing and developing ORC

simulation

Marvin Fonseca

Organic Rankine Cycle (ORC) Design Overview

SolidWorks Rendering of Organic Rankine Cycle

Design Overview

ORC w/ Solar Collectors

Pressures Calculated using MATLAB

Location	Pressure (MPa)
Heat Exchanger Outlet/Turbine Inlet (3)	1.00
Turbine Outlet/Compressor Inlet (4)	0.5
Compressor Outlet/Tank Inlet (5)	1.10
Tank Outlet/Solar Collector Inlet (6)	1.05
Solar Collector Outlet/Heat Exchanger Inlet (7)	1.04

Marvin Fonseca

Heat Exchanger

Heat Exchanger

Parameters	Size (m)	
n-Butane Inlet and Outlet	0.63	
Exhaust Gas Inlet and Outlet	0.85	
Shell Inside Diameter	4.0	\$0.63
Shell Outside Diameter	4.03	Shell Material: Stainless Steel

Heat Exchanger

Marvin Fonseca

Tube

Supports for heat exchanger

Slide 15 of 40

Group 2

Marvin Fonseca

<u>Turbine</u>

Compact steam turbine for output ranges of up to 6 MW

Power output	Up to 6 MW	
Snood	According to driven	
Speed	machine	
Inlet steam pressure	up to 131 bar (a)	
Inlat stoom tomporature	Dry saturated steam up to	
imet steam temperature	530°C	

Typical dimensions of the SST-060 series Length: 1.5 m / Width: 2.5 m / Height: 2.5 m

SST-060 Series Siemens Steam Turbines

Slide 16 of 40

Group 2

Kyle Fields

<u>Turbine</u>

Kyle Fields

Slide 17 of 40 Gr

- Variable Turbine Inlet Temperature
- n-butane is an Ideal gas
 - $W_{out} = \dot{m}dh$
 - • $dh = c_p dT$
 - C_p = 2.2 kJ/kgK [NIST]
- Butane mass flow = 7 kg/s
- Heat input ~ 890 kWt
- 50% Efficient
 - Total Turbine Efficiency(75%) Compressor Power(25%)
- Average power output of turbine is 440-460 kWe

- Corken Reciprocating Compressor HG601BX
- Motor Speed 1200 rpm
- Maximum Mass Flow Rate: 15.4 kg/m^3
- Maximum Allowable Pressure: 11MPa
- Compressed from 0.5 MPa to 1.1MPa

Slide 18 of 40 Group 2

Kyle Fields

Initial System Cost

Total System Cost = **\$2,000,623**

Slide 20 of 40

Group 2

Daniel Baker

Pay-Back Time

Total Annual Power Produced = 3,900,000 kWhr \$0.085 kWhr from Duke Energy Total Annual Savings ~ \$330,000 Annual Maintenance Cost = \$250,000 Annual Inflation Rate of 2%

Pay-Back Time = 19 Years !!!!

Daniel Baker

Summary ORC

- Average Annual Savings of ORC is \$335,799.91
- Payoff Period of 19 years
- Overall System Efficiency: ~9-11%
- Overall ORC is feasible
- Strongly recommend improving efficiency of system before implementing
 - Could be done in future senior design project
- Reduce the payoff Period by ~5 years

Slide 22 of 40

Group 2

Daniel Baker

R

Total Annual Energy Savings

Annual	Initial Cost	Operating Cost	kWh electric	\$ generated	Pay Back
ORC	\$ 2,000,623.00	\$250,000	3,950,587	\$335,799.91	19 years
Chillers	\$ 325,000.00	\$78,630	N/A	\$223,095.00	1 years
Wind Turbine	\$ 1,338,944.32	\$36,512.49	2,608,076	\$221,686.50	8 years
Total	\$ 3,664,567.32	\$365,142.49	6,558,664	\$780,581.40	N/A

Total Energy Saved = 4.21% ©

Slide 24 of 40

Project Outcomes

Lessons Learned

- Communication
- Scheduling
- Time Management
- Always prepare for the worst
- Overall a great experience

Questions

Slide 26 of 40

Group 2

Daniel Carnrike

- [1] "Past Sustainability Reports." Living Our Values. 15 May 2013. Web. 18 Sept. 2014. http://www.cummins.com/global-impact/sustainability/past-reports.
- [2] "Cummins Explores Solar to Help Power Facilities." Cummins, n.d. Web. 22 Sept. 2014.
 http://www.cummins.com/cmi/navigationAction.do?nodeId=201&siteId=1&nodeName=Cummins+Looks+at+Solar+Power&menuId=1_050>
- [3] "Off-Grid Zero Emission Buildings." FSU. N.p., n.d. Web. 25 Sept. 2014. < http://esc.fsu.edu/currentProjects.html>
- [4] Kutz, Myerq. "Energy Audits." *Mechanical Engineers' Handbook*. 3rd ed. Vol. 4. Delmar: Mcgraw Hill, 2005. 272-301. Print.
- [5] "What Are Solar Panels Made Of?" Solar Power World. Web. 10 Oct. 2014.
- <<u>http://www.solarpowerworldonline.com/2013/05/what-are-solar-panels-made-of/</u>>
- [6]"Insulation. Department of Energy" Web. 30 October 2014. <<u>http://energy.gov/energysaver/articles/insulation-materials</u>>
- [7] "Dynamometer Review." *Engineers EDGE*. Web. 17 Oct 2014.
- <<u>http://www.engineersedge.com/industrial-equipment/dynamometer-review.htm</u>>
- [8] "Absorption Chillers." New Building Institute Advanced Design Guideline Series (1998): 1-97. Web. 15 Oct. 2014.
 <www.newbuildings.org>.
- [9] Xiu, Zang. "Economic Effects on Organic Ranking Cycle For Waster Heat Recover." Energy 29 June (2008): 11. Print
- [10] Andersen, W.C., Bruno, T.J. Rapid Screening of Fluids for Chemical Stability in
- Organic Rankine Cycle Applications. Ind. Eng. Chem. Res., v. 44 (2005) pp. 5560-5566.

Slide 27 of 40

Group 2

Daniel Carnrike

- [11] Angelino, G., Invernizzi, C. Cyclic Methylsiloxanes as Working Fluids for Space Power
- Cycles. Transactions of the ASME v. 115 (1993)
- [12] Liu, Bo_Tau. "Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery." Energy 29 June (2004): 11. Print
- [13] Angelino, G., Colonna diPaliano, P. Multicomponent working fluids for Organic Rankine
- Cycles (ORCs)
- [14] "Organic Cycle." Design & Optimization of Organic Rankine Cycle Solar-Thermal Powerplants. Web. 3 Dec. 2014.
 http://minds.wisconsin.edu/handle/1793/7889>.
- [15] "Low Grade Heat Conversion." Low-grade Heat Conversion into Power Using Organic Rankine Cycles A Review of Various Applications. Web. 5 Feb. 2015. http://www.sciencedirect.com/science/article/pii/S1364032111002644>.
- [16] "Cummins Explores Solar to Help Power Facilities." Cummins, n.d. Web. 22 Sept. 2014.
 http://www.cummins.com/cmi/navigationAction.do?nodeId=201&siteId=1&nodeName=Cummins+Looks+at+Solar+Power&menuId=1 050>
- [17] "SolarWorld SW 250 Mono,250 Watt Solar Panel". GoGreen Solar. Web 22 Oct 2014 http://www.gogreensolar.com/products/solarworld-sw-250-mono-250-watt-solar-panel-pallet-of-30
- [18] "Absorption Chillers." New Building Institute Advanced Design Guideline Series (1998): 1-97. Web. 15 Oct. 2014.
 <www.newbuildings.org>.
- [19] "Butane-n, C4H10, Physical Properties, Safety, MSDS, Enthalpy, Material Compatibility, Gas Liquid Equilibrium, Density, Viscosity, Flammability, Transport Properties." Butane-n, C4H10, Physical Properties, Safety, MSDS, Enthalpy, Material Compatibility, Gas Liquid Equilibrium, Density, Viscosity, Flammability, Transport Properties. N.p., n.d. Web. 10 Apr. 2015.
 ">http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=8>.

Slide 28 of 40 Group 2 Daniel Carnrike

- [20] Surface Roughness Data Engineering Toolbox. N.p., n.d. Web. http://www.engineeringtoolbox.com/surface-roughness-ventilation-ducts-d_209.html.
- [21] "A Global Leader in Industrial Compression & Pumping Solutions." Industrial Compressor. Web. 1 Apr. 2015.
 http://www.corken.com/Homes.
- [22] "Engine Exhaust Flow and Horsepower Guide." Engine Exhaust Flow and Horsepower Guide. Donaldson. Web. 12 Jan. 2015.
 http://www.asia.donaldson.com/en/exhaust/support/datalibrary/1053747.pdf.
- [23] "Calculating Engine Exhaust." Calculating Engine Exhaust. Donaldson. Web. 12 Jan. 2015.
 http://india.donaldson.com/en/engine/support/datalibrary/065857.pdf.
- [24] Cengel, Yunus A., and Robert H. Turner. "Power and Refrigeration Cycles." *Fundamentals of Thermal-Fluid Sciences*. 4th ed. Boston: McGraw-Hill, 2012. Print.
- [25] "SST-060 Series Siemens Steam Turbines." SST-060 Compact Steam Turbine. Web. 3 Apr. 2015.<http://www.energy.siemens.com/us/en/fossil-power-generation/steam-turbines/sst-060.htm>.
- [26] Janna, William S. "Shell and Tube Heat Exchangers." *Design of Fluid Thermal Systems*. 3rd ed. Boston: PWS Pub., 1998. Print.
- [27] Saunders, E.A.D. Heat Exchangers Selection, Design and Construction. New York: Longman Scientific and Technical Publishers; co-published with John Wiley and Sons, Inc. Pub., 1988. Print.
- [28] Putnam, Richard E. "Optimizing the Cleaning of Heat Exchangers." Conco Consulting Corp. Web. 3 Apr. 2015.<
 www.concosystems.com/.../optimizing-cleaning-heat-exchangers.pdf>.
- [29] Schwarz, Douglas. "Fast and Robust Curve Intersections File Exchange MATLAB Central." Fast and Robust Curve Intersections. MathWorks, 31 July 2006. Web. 10 Apr. 2015. http://www.mathworks.com/matlabcentral/fileexchange/11837-fo robust-curve-intersections>.

Slide 29 of 40 Group 2 Daniel Carnrike

Cummins Energy Saving

R

- [30] "Air Compressor Maintenance." Guide. Web. 2 Apr. 2015. < http://www.portlandcompressor.com/compressor/maintenance.aspx>.
- [31] Darrow, Ken, Rick Tidball, James Wang, and Anne Hampson. "Catalog of CHP Technologies." U.S. Environmental Protection Agency, 1 Jan. 2015. Web. 3 Apr. 2015. http://www.epa.gov/chp/documents/catalog_chptech_3.pdf>.
- [32] Janna, William S. "Shell and Tube Heat Exchangers." *Design of Fluid Thermal Systems*. 3rd ed. Boston: PWS Pub., 1998. Print.
- [33] "Shipping Cost." Uship. Web. 3 Apr. 2015. https://www.uship.com/.
- [34] Avry, Peter. "Economic Implementation of the Organic Rankine Cycle." Web. 3 Apr. 2015.
 http://aceee.org/files/proceedings/2011/data/papers/0085-000077.pdf>.
- [35] "SST-060 Series Siemens Steam Turbines." SST-060 Compact Steam Turbine. Web. 3 Apr. 2015.<http://www.energy.siemens.com/us/en/fossil-power-generation/steam-turbines/sst-060.htm>.
- [36]"Winter Weather." /CDC. Web. 4 Mar. 2015. <http://emergency.cdc.gov/disasters/winter/index.asp>.
- [37] "Air Compressor Maintenance." *Guide*. Web. 2 Apr. 2015. ">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx>">http://www.portlandcompressor.com/compressor/maintenance.aspx">http://www.portlandcompressor/maintenance.aspx">http://www.portlandcompressor/maintenance.aspx"
- [38] Darrow, Ken, Rick Tidball, James Wang, and Anne Hampson. "Catalog of CHP Technologies." U.S. Environmental Protection Agency, 1 Jan. 2015. Web. 3 Apr. 2015. http://www.epa.gov/chp/documents/catalog_chptech_3.pdf>.
- [39] "Energy.gov." Home Energy Audits. Web. 15 Sept. 2014. http://energy.gov/public-services/homes/home-weatherization/home-energy-audits.
- [40] "ISX15 for Heavy-Duty Truck (2013)." Cummins Engines. Web. 20 Sept. 2014. http://cumminsengines.com/isx15-heavy-duty-truck-2013#specifications>.
- [41] "ATRI Main Report." Maine.gov. Web. 2 Oct. 2014. < http://www.maine.gov/mdot/ofbs/documents/pdf/atrimainereport.pdf>.

Slide 30 of 40

Group 2

Daniel Carnrike

- [42] "IT100 ORC System Specifications." Web. 15 Oct. 2014. http://infinityturbine.com/ORC/IT100_ORC_System.html.
- [43] "IT50 ORC System Specifications." Web. 15 Oct. 2014. < http://infinityturbine.com/ORC/IT50_ORC_System.html>.
- [44] "Space Radioisotope Power Generation." NASA. Web. 21 Oct. 2014.
 http://mars.jpl.nasa.gov/msl/files/mep/MMRTG_Jan2008.pdf.
- [45] "Waste Heat Recovery Unit." Wikipedia. Wikimedia Foundation. Web. 15 Nov. 2014.
 http://en.wikipedia.org/wiki/Waste_heat_recovery_unit.
- [46] "N-Butane." *Engineering Toolbox*. Web. 24 Nov. 2014. <http://www.engineeringtoolbox.com/butane-d_1415.html>.
- [47] "Gases Explosive and Flammability Concentration Limits." *Engineering Toolbox*. Web. 28 Nov. 2014.
 http://www.engineeringtoolbox.com/explosive-concentration-limits-d_423.html.
- [48] "Welcome to the NIST Chemistry WebBook." Welcome to the NIST WebBook. Web. 3 Dec. 2014. < http://webbook.nist.gov/>.
- [49] "Boiler Types and Classifications." THE INDUSTRIAL WIKI. Web. 20 Dec. 2014. https://www.myodesie.com/index.php/wiki/index/returnEntry/id/3061.
- [50] "Boilers and Heaters." *Thermax.* Web. 16 Dec. 2014. http://www.thermaxindia.com/Fileuploader/Files/Boilers-&-Heaters.pdf.
- [51] "Turbine Design Services." *Infinity Turbine*. Web. 22 Dec. 2014.
 http://www.infinityturbine.com/ORC/Turbine_Design_Services.html>.
- [52] "Range of Climate Friendly Technologies." *BibSonomy*. Web. 15 Dec. 2014. < http://www.bibsonomy.org/tag/bibliothek>.
- [53] Vieira, Da Rosa Aldo. Fundamentals of Renewable Energy Processes, Third Edition. Kidlington, Oxford, U.K: Academic, 2013.
 Print.
- [54] Hand, M. "Wind Turbine Design Cost and Scaling Model." Nrel.gov. Web. 10 Feb. 2015.
 http://www.nrel.gov/wind/pdfs/40566.pdf>.


```
Collector area = 2100; %m^2 CTC Roof
Solar transmittance = 0.92; %AE Collector
Solar Absorptance = 0.96; %AE Collector
Collector storage = 0; %J
Global Conductance = 8; %W/m^2*K
Insolation = Total Beam * Solar transmittance; %correct %W/m^2
G = massflownbutane / Collector area;
T f in = 80 + 273.15;
T f out = T f in + (50 .* C ./ .126) .* (Insolation ./ max(Insolation));
Fr = (G * cp nbutane .*(Tfout - Tfin)) ./ ((Solar_Absorptance .* Insolation) - Global_Conductance * (Tfin - Temperature_ambient));
heat Useful = F r .* Insolation .* Solar Absorptance .* ...
    Collector area - (Global Conductance .* (T f in - Temperature ambient) .* F r .* Collector area);
%Heat Useful = abs(heat Useful)
%Heat_lost = (Global_Conductance .* Collector_area .* (T_f_out + 273.15 - Temperature_ambient))
Heat lost = (Insolation .* Collector area) - heat Useful;
Temperaturedifference = heat Useful ./ (massflownbutane.*cp_nbutane);
t Collector out = Temperaturedifference + T f in;%K
tcounter = 1:
while tcounter<=48
    if tcounter/2 < time rise solar || tcounter/2 > time set solar
        t Collector out(tcounter) = T f in;
    else
        t Collector out(tcounter) = t Collector out(tcounter);
     end
     tcounter = tcounter + 1;
end
t Collector out;
T Collector out C = t Collector out - 273.15 %C
TotalTempchange = sum(Temperaturedifference);
Heat total = heat Useful + Heat lost;
Collector efficiency = heat Useful ./ Heat total;
```


Solar Panels

Annual	Initial Cost	Operating Cost	kWh electric	\$ generated	Pay Back
Solar Panels	\$404,862.00	\$2,500	314,521	\$26,734.29	18 years

Marvin Fonseca

Storage Tank

Details

- Part Number: N-40387
- Mfr. Part Number: 40387
- Capacity: 1635 Gallons
- Dimensions: 142"L x 71"W x 58"H
- Weight: 470 lbs.
- Ships From: CA, GA, MN, OH, OK, TX, UT
- Manufacturer: Norwesco
- Material: Polyethylene
- Price: \$1,965.99

Capacity determined by volume of butane needed in heat exchanger.

```
V = 6.05 \text{ m}^3 = 1598 \text{ gal} (Butane in HE)
```


Slide 35 of 40

Group 2

Daniel Carnrike

Working Fluid Selection

	Molecular Weight (g/mol)	Boiling Point (^o C)	Wet or Dry	Heat of Vapor @ 1 atm (kJ/kg)
Water	18	100	W	2256
Methanol	32	64	W	1098
2-M-P-H2O	33	93	W	879
Fluorinol 85	88	75	W	442
Toluene	92	110	D	365
R-113	187	48	D	1370
Ammonia	17	-33	D	1370
Isobutane	58	-12	D	367
n - butane	58	-0.4	D	385
n - pentane	72	36	D	325

Pipe Material Selection

Material	Therm. Cond. k (W/m*K)	Melting T (F)	Density (kg/m^3)
Black steel	43	2600	7850
304 SS	16	2750	8030
Brass	109	1700	8400
Copper	401	1983	8900

Pipe Insulation Selection

Property	Temperature Range (F)	Conductivity k	Density (lb/ft^3)	Safety
Fiberglass	То 500	0.20-0.31	1.5-3.0	Fire Resistant

Slide 38 of 40

Group 2

Daniel Carnrike

Insulation

	Thermal			Fire
Material	Resistance	Types	Green	Resistant
		High,	20% to	
	2.2 to 2.7	Medium,	30%	
Fiber Glass		Low Density	Recycled	Yes
			75%	
	27	Blanket and	post-	Voc
	5.7	loose fill	industrial	165
Mineral Wool			recycled	
		looso fill or	82% to	
	3.2 to 3.8	spray	85%	No
Cellulose		spiay	recycled	
	3 8 to 4 3	High, Low		
Plastic Fiber	0.010 4.0	Density		Yes
		Spray,		
	5.6 to 8	Foam		No
Closed Cell Foam		board		
Closed Cell Foam	0	Foil		Voc
modified	9	FUII		162
Group 2	Da	niel Baker		Cu

Slide 39 of 40

Insulation

	Cost		
Material	(per ft^2)	Total Material Cost	Total Savings per year
Fiber Glass	0.42	\$9,606.66	\$18,331.76
Mineral Wool	0.625	\$14,295.62	\$18,352.97
Cellulose	1.25	\$28,591.25	\$18,448.09
Plastic Fiber	1.5	\$34,309.50	\$18,596.58
Closed Cell Foam	2.2	\$50,320.60	\$18,955.43
Closed Cell Foam modified	2.3	\$52,607.90	\$19,068.17
Group 2		Daniel Baker	Cum

Slide 40 of 40