

Cummins Energy Saving

Group Number 2

Daniel Baker, Warren Bell, Daniel Carnrike, Kyle Fields, Marvin Fonseca

Cummins Advisor: Dr. Roger England, Dr. Michael Hays Faculty Advisor: Dr. Juan Ordonez

Instructors: Dr. Shih, Dr. Gupta, Dr. Helzer

Group 2

Slide 1 of 20

Warren Bell, Kyle Fields

Overview

Updated Design Analysis:

- Chillers
- Insulation
- Engine Testing
 - Mechanical and Thermodynamic Power

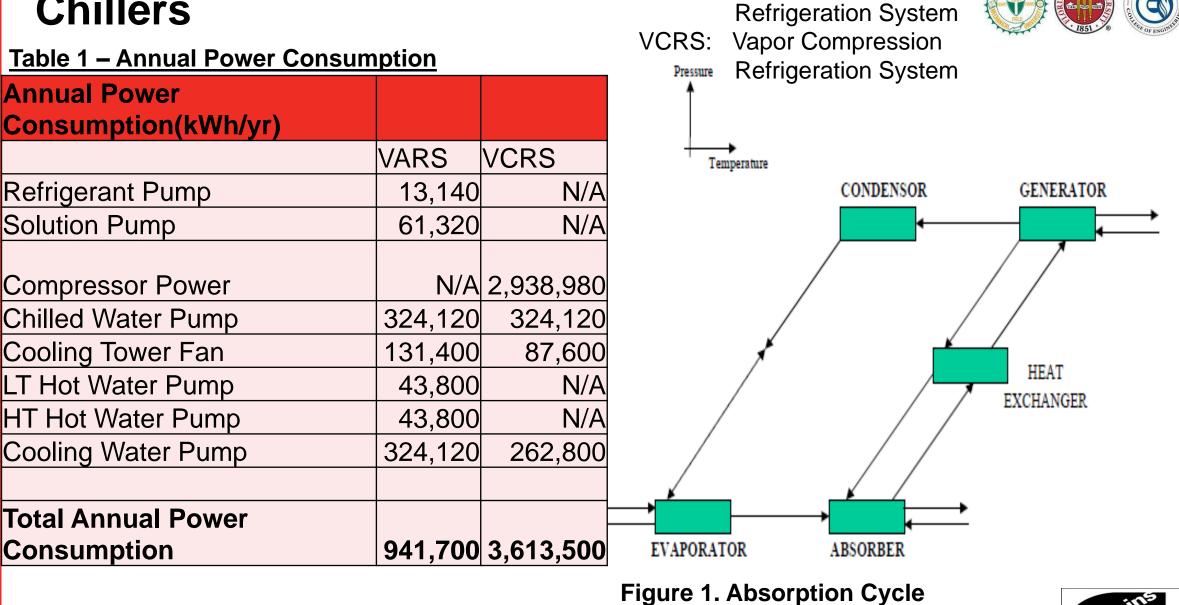
- Indiana Trip
- Additional Ideas
- Schedule
- Summary and Future Work

Need Statement

Cummins needs to reduce their energy usage in order to save money and reduce their environmental impact."

Goal Statement

The goal of the project is to, "Review current Cummins Technical Center (CTC) electrical usage and devise a plan to decrease it by 10%."


a Greater than 5% but less than 30% of site total 3 Medium - Opportunities for improving efficiency a consumption may decrease GHG 1 Less than 5% of site total 1 Low - Opportunities for improving efficiency and consumption may decrease on GHG Energy Cost: the cost of the energy in the subsystem in local currency Ability to Measure: the level of availability of accurate, reliable data 9 Greater than \$1 million 9 High - Metered data available	Prim	ary Energy Consumption: the Energy used in the	Ability to Influence: the level of opportunities for reductions in										
a a b	subs	ystem converted to primary energy in MMBTU	energy use and / or GHG emissions for that subsystem										
 Interpretendent of the control of the energy in the subsystem in local currency Greater than \$1 million Greater than \$100,000 but less than \$1 million Medium - Some metered data available for calculating subsystem use 	9	Greater than 30% of site total	9	High - Opportunities for improving efficiency and consumption will substantially decrease GHG									
 In the construction of the energy in the subsystem in local currency Ability to Measure: the level of availability of accurate, reliable data available Greater than \$1 million Greater than \$100,000 but less than \$1 million Medium - Some metered data available for calculating subsystem use 	3	Greater than 5% but less than 30% of site total	3										
Iocal currency Ability to Measure: the level of availability of accurate, reliable data 9 Greater than \$1 million 9 High - Metered data available 3 Greater than \$100,000 but less than \$1 million 3 Medium - Some metered data available for calculating subsyster	1	Less than 5% of site total	1	Low - Opportunities for improving efficiency and consumption will have little or no decrease on GHG									
3 Greater than \$100,000 but less than \$1 million 3 Medium - Some metered data available for calculating subsyster use				ity to Measure: the level of availability of accurate, reliable data									
use	9	Greater than \$1 million	9	High - Metered data available									
1 Less than \$100,000 1 Low - No metered data available	3	Greater than \$100,000 but less than \$1 million	3	Medium - Some metered data available for calculating subsystem use									
	1	Less than \$100,000	1	Low - No metered data available									

Slide 4 of 20 Group 2

Kyle Fields

Revision date:	8/18/2014	Significance threshold: 220								
Rating of Impo	rtance to EnMS	10	5	10	5	10	10			
-	Important Energy Users Energy subsystem / function	Primary Energy Consumption (MMBTU)	Cost (Currency)	Greenhouse Gases (MTCO2)	Ability to Influence	Ability to Measure	Regulatory Requirements	Total		
1	Engine Testing (Diesel)	9	9	9	9	3	9	390		
2	Facilties boilers (NG)	3	1	3	3	3	3	140		
3	Test Cell Fans/Pumps (Electricity)	3	3	3	9	9	1	220		
4	Test Cell, include Dynos (Electricity)	3	3	3	3	9	1	190		
5	CVS Chillers & Chilled Water (Electricity)	3	3	3	9	9	1	220		
6	Process water (Electricity)	3	3	3	3	9	3	210		
7	Engine testing (NG)	1	1	1	3	3	9	160		
8	Miscellaneous (Electricity)	1	3	1	0	9	0	125		
9	Office (Electricity)	1	3	1	1	9	1	140		
10	Compressors (Electricity)	1	3	1	1	9	1	140		
11	Hybrid Test Cell, Cold Cell, Altitude Test Cell (Electricity)	1	3	1	1	9	1	140		
12	Applied Lab (Electricity)	1	3	1	1	9	1	140		
13	HTG Pump, Air Handlers-main aisle, Emergency Generator (Electricity)	1	3	1	3	9	1	150		
14	Waste Heat Recovery Cells (NG)	1	1	1	1	1	3	70		
15	Lighting (Electricity)	1	1	1	1	9	1	130		
16	Walesboro Noise Facility (Electricity)	1	1	1	1	3	1	70		

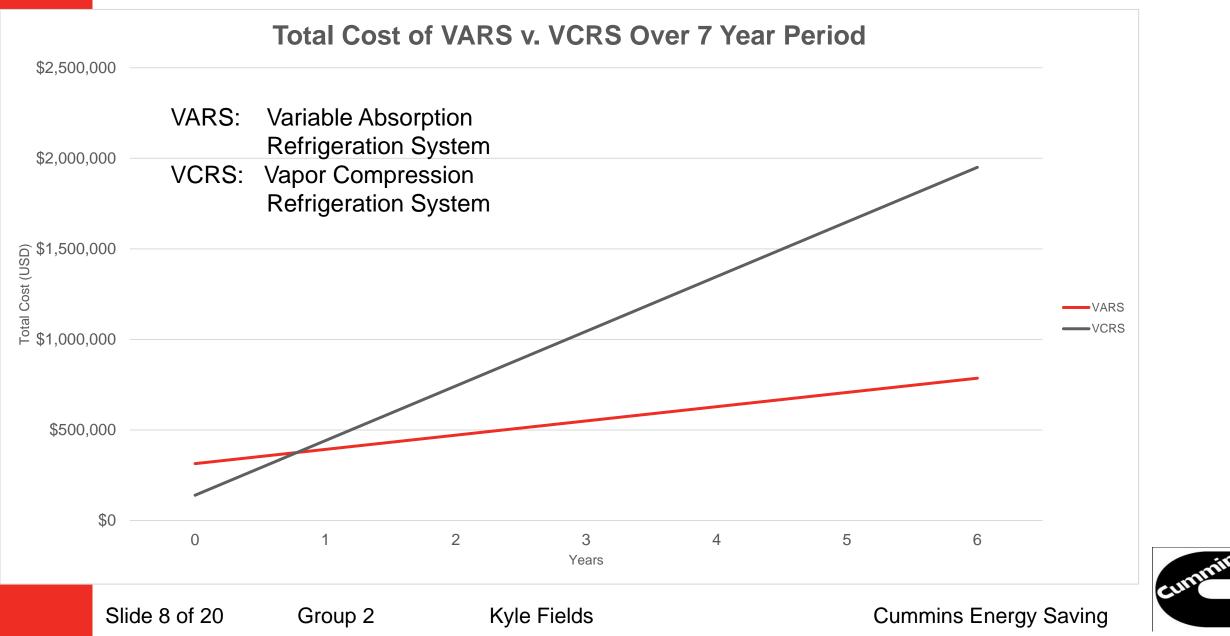
Chillers

VARS:

Variable Absorption

Chillers

Table 2 – Annual Cost Comparison


Table 3 – Initial Cost Comparison

Annual Operating Costs (USD)			Initial Cost (USD)								
	VARS	VCRS		VARS		VCRS	S				
Refrigerant Pump	\$ 1,097.19	N/A	Machine Cost	\$	278,478	\$	112,041				
Solution Pump	\$ 5,120.22	N/A	Cooling Tower	\$	22,826	\$	19,565				
Compressor Power	N/A	\$ 245,404.83	Cooling Water								
Chilled Water Pump	\$ 27,064.02			\$	5,435	5\$	4,348				
Cooling Tower Fan	\$ 10,971.90	\$ 7,314.60	Chilled Water								
LT Hot Water Pump	\$ 3,657.30		Pump	\$	3,913	\$	3,913				
HT Hot Water Pump	\$ 3,657.30		LT Hot Water								
Cooling Water Pump	\$ 27,064.02		Pump	\$	1,848	· · · · ·	N/A				
	,		HT Hot Water								
	,		Pump	\$	1,848	·	N/A				
					/	· · · · ·					
Total Annual Operating		1	Total Initial								
Cost	\$ 78,631.95	\$ 301,727.25	Cost	\$ 3	314,348	\$	139,868				

R

Insulation

Ta	Cost				rial Propertie	<u>s</u>			
	Cost				Thermal			F	
	(per		Total Savings per	Material	Resistance	Types	Green	R	
Material	ft^2)	Total Material Cost	year		2.2 to 2.7	High, Medium,	20% to 30%		
Fiber Glass	0.42	\$9,606.66	\$18,331.76	Fiber Glass		Low Density	Recycled		
Mineral	0.005					Blanket and	75% post-		
Wool	0.625	\$14,295.62	\$18,352.97		3.7	loose fill	industrial		
Cellulose	1.25	\$28,591.25	\$18,448.09	Mineral Wool		10030 111	recycled		
Plastic						loose fill or	82% to		
Fiber	1.5	\$34,309.50	\$18,596.58	Cellulose	3.2 to 3.8	spray	85% recycled		
Closed Cell					3.8 to 4.3	High, Low			
Foam	2.2	\$50,320.60	\$18,955.43	Plastic Fiber	5.6 10 4.5	Density			
Closed Cell				Closed Cell Foam	5.6 to 8	Spray, Foam board			
Foam	2.3			Closed Cell Foam					
modified		\$52,607.90	\$19,068.17	modified	9	Foil			

Kyle Fields

Engine Testing – Dynamometers

88 main Test Cells with 8 auxiliary Test Cells.

Cummins ISX15 600 used for analysis.

Variable	Value							
Test Power	268.2 kW							
Power Generation	7,878,643 kWh							
Power Lost	1,390,348 kWh							
Annual Savings	\$5,866,437,727							
Annual Savings Lost (inefficiency)	\$1,035,253,716							

Table 6 – Dynamometers Properties

Engine Testing – Exhaust gasses

	<u>Iable / – Exi</u>
88 main Test Cells with 8 auxiliary Test Cells	
	Fuel Consumptior
Cummins ISX15 600 used for analysis	Mass Flow Fuel Ir
Q = n * m_dot_exhaust * C_v (T_out – T_amb.)	Mass Flow In Air
Delluterate	Mass Flow In Tota
Pollutants	Mass Flow Refue
	Mass Flow Exhau
	Specific Heat Fue
	Heat Generated
	Heat Available to Convert
	Heat Available

Table 7 – Exhaust Properties

	Fuel Consumption	11.67 Gallons / Hour
	Mass Flow Fuel In	10.21 g/s
)	Mass Flow In Air	10.58 g/s
	Mass Flow In Total	20.79 g/s
	Mass Flow Refuel	1.021 g/s
	Mass Flow Exhaust	19.77 g/s
	Specific Heat Fuel	1.832 kJ / kg*K
	Heat Generated	354.1 kW
	Heat Available to	
	Convert	318.7 kW
	Heat Available	1,147,294 kWh

Engine Testing – Noble Energy Conversion

Table 8 – Energy Conversion Systems Comparison

	Theoretical eff.	Actual eff.		Annual maintenance cost
Thermionic Generator	40%	10%	low	low
Generation Thermocoupler	10%	(5% - 8%)	low	low
Rankine Cycle	42%	40%	med	med
Single Reheat Rankine	46%	44%	med-high	med-high
Double Reheat Rankine	48%	46%	high	high
Regeneration Rankine (open)	45%	43%	high	med-high
Regen. Rankine (closed)	47%	44%	high	high
Steam Turbine Cogeneration	100%	80%	high	high

Heat Energy (degraded) \rightarrow Electrical Energy (noble)

Slide 12 of 20

Warren Bell

Engine Testing – Cogeneration

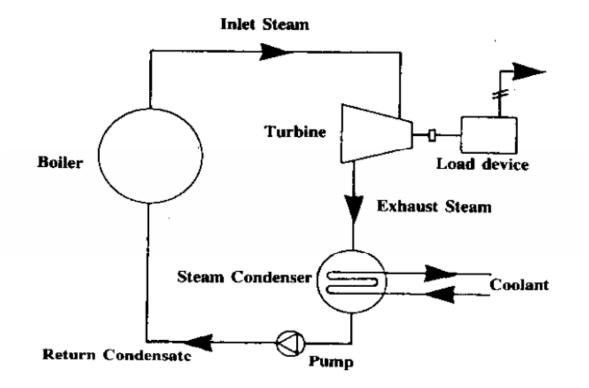


Figure 2. Cogeneration (Condensing) Cycle

Slide 13 of 20

Warren Bell

Indiana Trip

Key Takeaways:

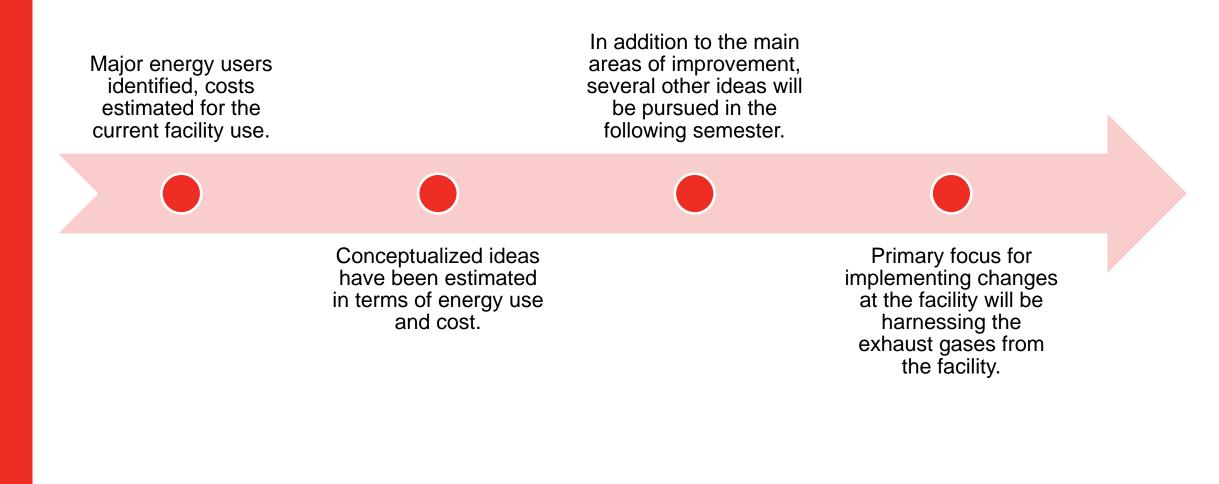
- Cummins has already implemented closed cell foam insulation in the roof.
- Absorption chillers can potentially be combined with the exhaust gases as the energy source.
- The exhaust gases (post analysis) are being neglected as a potential energy source.

Cummins wants us to focus resources on designing a system for the exhaust gases along with our other design analyses.

Kyle Fields

Additional Ideas

- Wind Turbine/High Altitude wind turbines
- Heat treat facilities/components
- More efficient Air Conditioning Units/HVAC
- Making the building more green
 - Check 179D federal tax reduction
 - What are some Go Green building regulations



			NAME OF TAXABLE PARTY.	t 12, '14) ct 26, '14			v 9, '14	AND THE		23, '14		Dec	7, '14	241
	1. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	- Duration	1 1-20-20-20 IV	- 14	18	22	26 3	0 3	7	11	15 19	23	27	1	5	9	1
1	BackGround Research	10 days	Mon 9/8/14														
8	Web Design	13 days	Mon 9/15/14													1	
13	Zero House Emissions	1 day	Fri 10/17/14	-													
14	Grid Monitoring Design	14 days	Mon 10/20/14		-												
15	5 Brain Storming	8 days	Wed 10/22/14					8									
10	4 Solar Panel Design	14 days	Mon 10/20/14		*				T)								
17	7 Cost Anaylsis	5 days	Mon 10/20/14		H	-										1	
18	Area Covered	5 days	Tue 10/21/14			_											
19	9 Insolation	5 days	Wed 10/22/14		F	_											
20	Power Generated	5 days	Thu 10/23/14		0												
21	Review Designs	1 day	Wed 10/29/14				H										
22	2 Pick Design	1 day	Wed 10/29/14				H.										
2	B Edit Design	3 days	Thu 10/30/14				-	-									
24	4 Cummins Visit	18 days	Thu 10/23/14		4					-	t 🗌						
25	5 Cost Anaylsis	5 days	Thu 10/23/14														
20	5 Question Developme	nt 13 days	Thu 10/23/14			-											
27	7 Building Tour	1 day	Fri 11/14/14							* H	2						
28	A ReRouting Design	21 days	Fri 11/14/14								-						J
29	Power Generation Cycle Research	10 days	Mon 11/17/14														
30	Analysis on Exhaust Gases	10 days	Wed 11/19/14														
31	I Initial Pipe Design	3 days	Wed 12/3/14														

GANII CHAK

Summary

References

- "Electric Power Monthly with Date for August 2014" Independent Statistics & Analysis; U.S Energy Information Administration. Web. 24 Oct 2014. <u>http://www.eia.gov/electricity/monthly/pdf/epm.pdf</u>
- 2. Murugavel, V., and R. Saravanan. "LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS." *Department of Mechanical Engineering, Anna University* (2010): 1-9. http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
- 3. "Dynamometer Review." *Engineers EDGE*. Web. 17 Oct 2014. <u>http://www.engineersedge.com/industrial-equipment/dynamometer-review.htm</u>
- 4. "Insulation. Department of Energy" Web. 30 October 2014. <u>http://energy.gov/energysaver/articles/insulation</u> <u>http://energy.gov/energysaver/articles/insulation-materials</u>

BANKERS LIFE FIELDHOUSE