

Cummins Energy Saving

Group Number 2

Daniel Baker, Warren Bell, Daniel Carnrike, Kyle Fields, Marvin Fonseca

Cummins Advisor: Dr. England, Dr. Hays

Faculty Advisor: Dr. Juan Ordonez

Instructors: Dr. Shih, Dr. Gupta

Group 2

Kyle Fields

Cummins Energy Saving

Background

- Cummins increased efforts to reduce energy consumption in 2009
- Energy audits used to reduce and reuse energy in industry
- An initial audit provides as much as a 20% energy savings

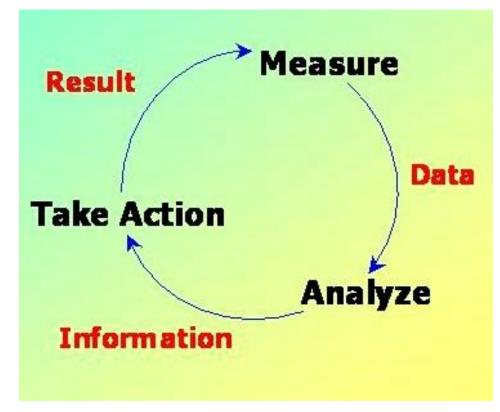


Figure 1 – Energy Audit Process

Fall 2014 Energy Saving Ideas

- Chillers
- Insulation
- Dynamometers
- Exhaust Gases
- Solar Panels

- Better appliances
- Solar light posts
- HVAC
- Wind Turbines
- Elevators

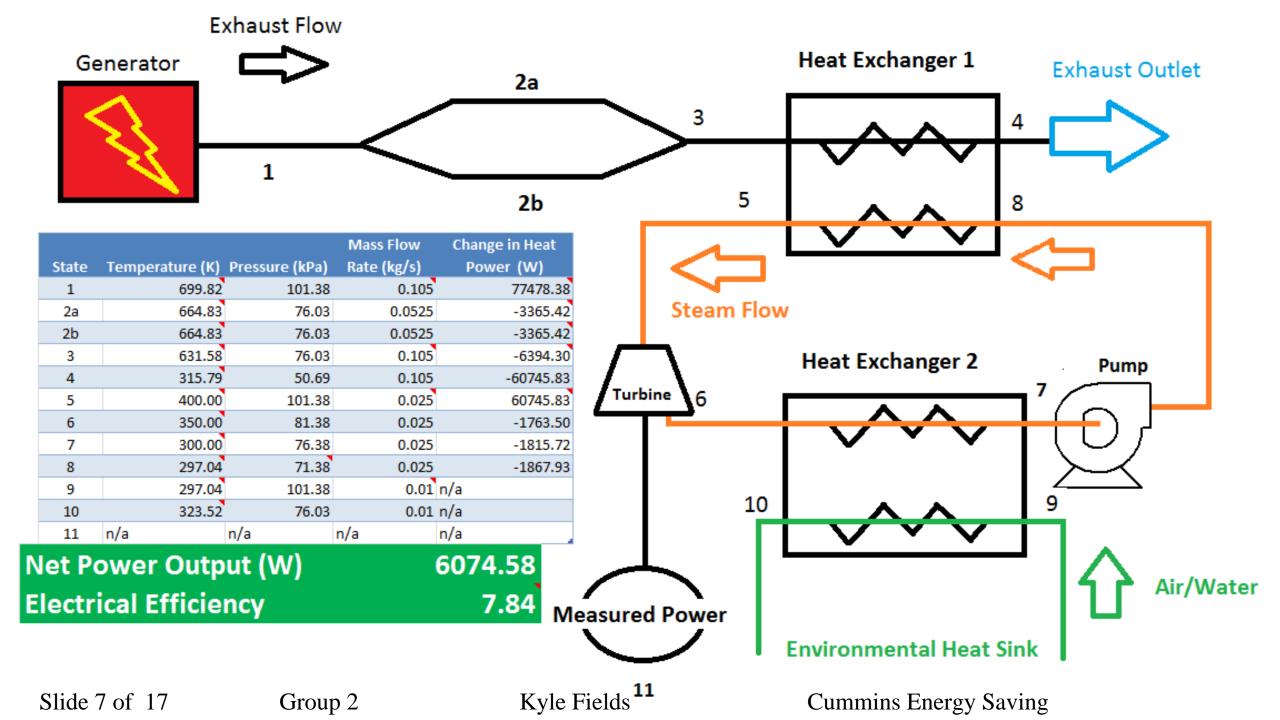
Fall 2014 Takeaways

More Focused Goal

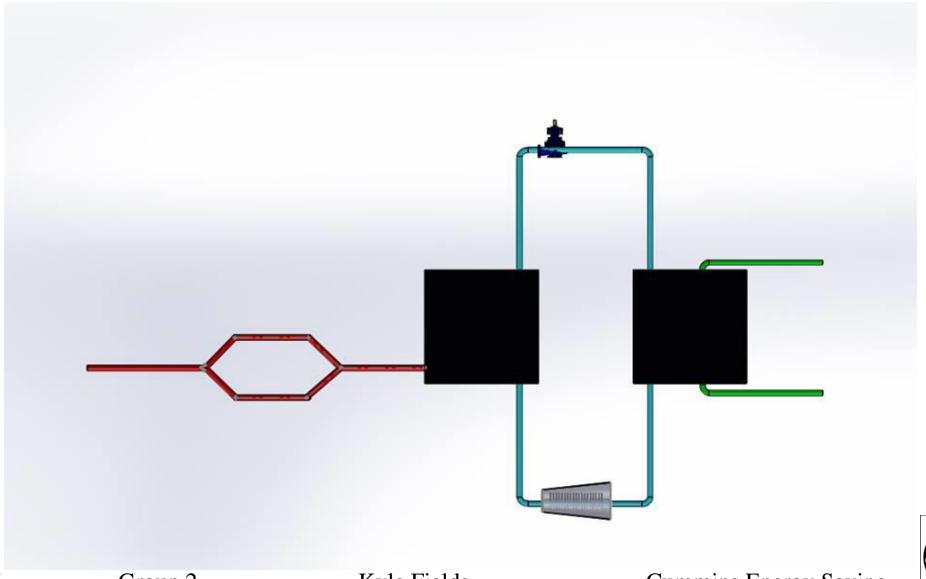
Main Sources of Energy Consumption

Improve Communication with Advisor and Professors

Some Ideas Developed Already Implemented


Revised Project Scope

"Provide an engine exhaust capture system design supplemented with other energy saving ideas that will assist in decreasing the overall energy usage at the Cummins Technical Center."



Cummins Energy Saving

Prototype

Slide 8 of 17 Group 2 Kyle Fields Cummins Energy Saving

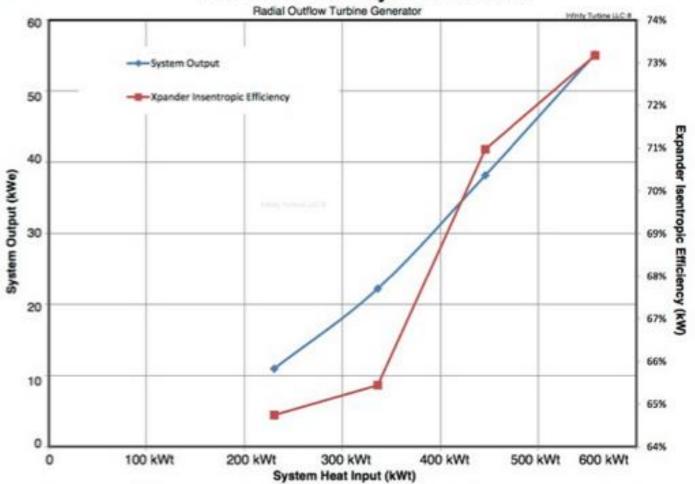
Pipe Material Selection

Material	Therm. Cond. k (W/m*K)	Melting T (F)	Approx. \$/ft
Black steel	43	2600	2
304 SS	04 SS 16		6.25
Brass			20
Copper	401	1983	5.6
Cadmium	92	610	n/a

Bill of Materials

BOM prototype	quantity	price	total	reference
Pump	2	\$199.00	\$398.00	lowes
Heat Exchanger	2	\$66.00	\$132.00	amazon
Piping	10	\$2.03	\$20.25	home depot
Valves	2	\$154.86	\$309.72	discover valve
Generator	1	\$0.00	\$0.00	Dr. Gupta
Turbine			\$0.00	Dr. Ordonez
		Total:	\$859.97	

• Current Budget: \$600


• Requesting: \$300 more

Cummins CTC Design

IT50 R245fa System Curve

Organic Rankine Cycle		
infinity turbine	IT100 R245fa ORC	IT50 R245fa ORC
	at 500 kWt	at 500 kWt
	30 kWe at 65%	50 kWe at 72%
	efficiency	efficiency
	system price is \$120,000	
Annual kWh	262,800	438,000
Installation	\$100,000	\$80,000
Annual revenue	\$22,338	\$37,230
Maintenance	\$10,000	\$10,000
Total initial	\$220,000	\$150,000
	18 year Return on	6 year Return on
	investment	investment

Cummins CTC Design

500 kWt from exhaust gasses

Mech. E to Elect. E	theoretical eff.	initial cost	installation	annual maitenance	elec. Effic.	Annual kWh	Annual revenue	25 year profit	ROI
Thermionic Gernerator	40%	N/A	N/A	N/A					
Generation Thermocoupler	10%	N/A	low	N/A					
RTG	40%	high	high	high	10%				
ORC 100	42%	120,000	100,000	10,000	10%	262,800	\$22,338	88,450	18
ORC 50	41%	70,000	80,000	10,000	10%	438,000	\$37,230	530,750	6
Single Reheat Rankine	51%	180,000	110,000	15,000	13%	569,400	\$48,399	544,975	9
Double Reheat Rankine	58%	240,000	120,000	16,000	15%	657,000	\$55,845	636,125	10
Regeneration Rankine (open)	48%	210,000	115,000	17,000	14%	613,200	\$52,122	553,050	10
Regen. Rankine (closed)	47%	210,000	120,000	18,000	14%	613,200	\$52,122	523,050	10
Steam Turbine Cogeneration	82%	300,000	140,000	50,000	36%	1,576,800	\$134,028	1,660,700	7
trigeneration (VCRS chiller)	100%	300,000	140,000	180,000	44%	1,971,000	\$167,535	-751,625	innefficient
trigeneration (VARS chiller)	100%	600,000	180,000	60,000	45%	1,971,000	\$167,535	1,908,375	8

Warren Bell

Future Work and Challenges Faced

- Fabrication of Prototype
- Simulation does not require accurate dimensions for CTC
- Large Scale Simulation
 - Assumed values must be accurate

Project Breakdown

								Ja	n '15			Feb	'15			Mai	r '15			A	or '1	5
Task Name ▼	Duration	Start		•	Finish	•	21	28	4 11	18	25	1	8	15	22	1	8	15	22	29	5	12
Background/Component Research	13 days	Wed	1/7/15	5	Fri 1/23/15																	
Exhaust Gas Capture Design	12 days	Sat 1	/17/15		Sat 1/31/15																	
Piping Design	11 days	Mon	1/19/1	5	Mon 2/2/15																	
Piping Material Selection	4 days	Sat 1	/31/15		Wed 2/4/15						ı											
Component Selection	6 days	Mon	2/2/15	,	Mon 2/9/15								ı									
Revise/Edit Material and Design	4 days	Mon	2/9/15	j	Thu 2/12/15	5																
Cost Analysis	4 days	Mon	2/9/15	,	Thu 2/12/15	,																
Order Material	10 days	Thu 2	2/12/15	5	Wed 2/25/1	.5																
Simulation Work	27 days	Thu 2	2/12/15	5	Fri 3/20/15																	
Capture Design Construction	16 days	Wed	2/25/1	15	Wed 3/18/1	.5																
Testing / Simulation Finalized	23 days	Wed	3/18/1	15	Fri 4/17/15																	

Summary

- Prototype calculations completed
- Request more for budget
- Begin Fabrication
- Ensure feasibility for CTC

Questions

References

- http://energy.gov/public-services/homes/home-weatherization/home-energyaudits
- http://cumminsengines.com/isx15-heavy-duty-truck-2013#specifications
- http://www.maine.gov/mdot/ofbs/documents/pdf/atrimainereport.pdf
- http://infinityturbine.com/ORC/IT100_ORC_System.html
- http://mars.jpl.nasa.gov/msl/files/mep/MMRTG_Jan2008.pdf

