

Cummins Energy Saving

Group Number 2

Daniel Baker, Warren Bell, Daniel Carnrike, Kyle Fields, Marvin Fonseca

Cummins Advisor: Dr. England, Dr. Hays Faculty Advisor: Dr. Juan Ordonez Instructors: Dr. Shih, Dr. Gupta

Group 2

Slide 1 of 20

Kyle Fields

Outline

- Background
- Simulation Plan
- Design Overview
- Working Fluid Selection
- Pipe Material Selection
- Heat Exchanger
- Turbine
- Summary

Background

- Cummins uses 20,000 gallons of fuel a year in testing
- Organic Rankine cycles are a new solution to generate energy from low temperature heat sources
- Statistical research indicates that low-grade waste heat accounts for more than 50% of total heat generated in the industry

Simulation Plan

- Simulation Design Package includes the following:
 - MATLAB program that allows user to vary several input parameters
 - Engine types running at the center (ISX, ISB, etc.)
 - Number of engines currently running (Use average of 50 engines running, though can vary to accommodate more or less engines)
 - External weather conditions (Low temps in Winter, High in Summer)
 - Output parameters: power, total system efficiency.
 - Pro-E/Solidworks
 - Dimensioned drawings of the piping system and heat exchanger components, visual representations of turbine, compressor, solar collectors.
 - Thermal analysis/FEA
 - Professional looking assembly of system
 - Overall System Cost Analysis

Slide 4 of 20

Design Overview

ORC w/ Solar Collectors

P3 = 1.00 MPa1 2 **Optional System** P4 = 0.50 MPaSolar Shell & Tube HX Collector 3 7 P5 = 1.10 MPaP6 = 1.05 MPa6 P7 = 1.04 MPan-Butane Storage Tank 5 Turbine Compressor

Pressures Calculated using MATLAB

Slide 5 of 20

Working Fluid Selection

	Molecular Weight (g/mol)	Boiling Point (^o C)	Wet or Dry	Heat of Vapor @ 1 atm (kJ/kg)
Water	18	100	W	2256
Methanol	32	64	W	1098
2-M-P-H2O	33	93	W	879
Fluorinol 85	88	75	W	442
Toluene	92	110	D	365
R-113	187	48	D	1370
Ammonia	17	-330	D	1370
Isobutane	58	-12	D	367
n - butane	58	-0.4	D	385
n - pentane	72	36	D	325

Pipe Material Selection

Material	Therm. Cond. k (W/m*K)	Melting T (F)	Density (kg/m^3)
Black steel	43	2600	7850
304 SS	16	2750	8030
Brass	109	1700	8400
Copper	401	1983	8900

Pipe Insulation Selection

Property	Temperature Range (F)	Conductivity k	Density (lb/ft^3)	Safety
Fiberglass	То 500	0.20-0.31	1.5-3.0	Fire Resistant

Slide 8 of 20

Group 2

Marvin Fonseca

Heat Exchanger

Shell Material: Stainless Steel Tube Material: Polished Brass

	Overall Heat Transfer (kW)	Pressure n-Butane	Drop Weight (kPa) (tons)	of SystemVeld Buta	ocity of n- Ve ane (m/s) Ex	locity of huast (m/s)
		4774	39.9	101.02	32.5	39.6
Sl	ide 9 of 20	Group 2	Mary	vin Fonseca	Cummin	s Energy Saving

Heat Exchanger

	Shell Parameters
Inner Diameter (m)	5.5
Outer Diameter (m)	5.525
Number of Baffles	7
Baffle Spacing (m)	3

¹Slide 10 of 20

Group 2

Heat Exchanger

	Tube Parameters
Tube Inner	
Diameter (mm)	245
Tube Outer	
Diameter (mm)	250
Clearance Between	
Tubes(mm)	25
Number of Passes	
(per Tube)	4
Number of Tubes	40

Slide 11 of 20

Supports for heat exchanger

Model name: Part4 Study name: SimulationXpress StudyEDefault-) Plot type: Static no dal stress Stress Deformation scale: 2490

Slide 12 of 20

Group 2

Marvin Fonseca

Storage Tank

Details

- Part Number: N-40387
- Mfr. Part Number: 40387
- Capacity: 1635 Gallons
- Dimensions: 142"L x 71"W x 58"H
- Weight: 470 lbs.
- Ships From: CA, GA, MN, OH, OK, TX, UT
- Manufacturer: Norwesco
- Material: Polyethylene
- Price: \$1,965.99

Capacity determined by volume of butane needed in heat exchanger.

```
V = 6.05 \text{ m}^3 = 1598 \text{ gal} (Butane in HE)
```


Slide 13 of 20

Group 2

Kyle Fields

Turbine/Expander

Compact steam turbine for output ranges of up to 6 MW

SST-060 Series Siemens Steam Turbines

Power output	Up to 6 MW							
Spood	According to driven							
Speed	machine							
Inlet steam pressure	up to 131 bar (a)							
Inlat atoom tomporatura	Dry saturated steam up to							
imet steam temperature	530°C							

Typical dimensions of the SST-060 series Length: 1.5 m* / Width: 2.5 m* / Height: 2.5 m* * Turbine only

Slide 14 of 20

Turbine/Expander

- Temperature Turbine Inlet 145°C
- Ideal gas, $dh = c_p dT$
- C_p = 2.2 kJ/kgK [NIST]
- Butane mass flow = 23.79 kg/s [assuming 50 engines, running 24/7]
- Calculated that with ~ 4.7 MW coming in, power output of turbine is 2.35 MW.
 - 75% efficient turbine system minus compressor losses (-25%) yields a conversion of 50%
- Overall exhaust gas heat provided is 9,319 kW
- Overall system efficiency: = P_gen / P_heat_input = 2.35/9.32

Overall system efficiency = 25%

Slide 15 of 20

Group 2

Kyle Fields

Turbine/Expander

Overall system efficiency = 25%

Annual energy provided = 2.35 MW * 3600s*24hours*365day/year

Annual energy = 74,109 GJ/year

Annual energy consumption = 760,000 GJ/year

Annual energy saved = 9.75%

Future Work

- March 28th: Assembly of system should be finalized with Thermal Analysis/FEA.
- April 2nd: Operation Manual and Design for Manufacturing, Reliability, Economics Due.
- April 10th: Final Report due
- April 17th: Open House/Final Presentations

				Ma	rch 3	2015								A	pril 2	015			
Task Name 👻 👻	Duration 👻	Start 👻	Finish 👻	1	4	7	10	13	16	19	22	25	28	31	3	6	9	12	15
Sponser/Advisor Meeting	1 day	Mon 3/2/15	Mon 3/2/15																
System Component Design	12 days	Sat 3/7/15	Sat 3/21/15																
Simulation Coding	14 days	Sat 3/7/15	Wed 3/25/15																
Assembly Analysis	7 days	Sat 3/21/15	Sat 3/28/15																
Thermal Anaylsis	7 days	Sat 3/21/15	Sat 3/28/15	1															
FEA	7 days	Sat 3/21/15	Sat 3/28/15																
Final System Review	2 days	Sat 3/28/15	Mon 3/30/15											L.,					
Class Deliverables	15 days	Mon 3/30/15	Fri 4/17/15	1															
Final Presentation	1 day	Fri 4/17/15	Fri 4/17/15	1															
				11															

Slide 17 of 20

Summary

- Heat Exchanger dimensioned and designed
- Power Output analyzed with total system efficiency
- Pressure drops and temperature changes calculated for each component
- Overall system calculations complete for ORC
- Solar Collector, Compressor portion is underworks

Questions

Slide 19 of 20

Group 2

Kyle Fields

References

- http://energy.gov/public-services/homes/home-weatherization/home-energy-audits
- http://cumminsengines.com/isx15-heavy-duty-truck-2013#specifications
- http://www.maine.gov/mdot/ofbs/documents/pdf/atrimainereport.pdf
- http://infinityturbine.com/ORC/IT100 ORC System.html
- http://mars.jpl.nasa.gov/msl/files/mep/MMRTG_Jan2008.pdf
- http://en.wikipedia.org/wiki/Waste heat recovery unit
- http://www.engineeringtoolbox.com/
- http://webbook.nist.gov/
- https://www.myodesie.com/index.php/wiki/index/returnEntry/id/3061
- http://www.thermaxindia.com/Fileuploader/Files/Boilers-&-Heaters.pdf
- http://www.infinityturbine.com/ORC/Turbine Design Services.html

tp://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2020&context=icec

Slide 20 of 20 G

Group 2