AUVSI DESIGN COMPETITION

Team 8

Sponsor. Dr. Shih, FIPSE Advisor. Dr. Frank, Dr. Alvi Instructor. Dr. Gupta Students: David Hegg, Christopher Bergljung, Jermaine Dickey, William Di Scipio, Gavarni Leonce, John Murnane, Tavarius Slaughter

Team: 8

Slide 1 of 36

Tavarius Slaughter

Agenda

- Introduction
- Background
- Competition Overview
- Goals and Objectives
- Design
 - Mechanical
 - Electrical
- Environmental, Safety, and Health Concerns
- Flight Testing
 - Quadrotor
 - Quad + Plane Body
 - Hybrid
- Budget
- Schedule
- Conclusion

Team: 8

Slide 2 of 36

Tavarius Slaughter

Introduction

Team 8 Senior Design Project:

The goal of this project is work effectively as an international team to create a Vertical Takeoff and Landing (VTOL) aircraft for future success at the 2016 AUVSI SUAS Competition.

Multi-disciplinary team

- 5 Mechanical Engineering & 2 Electrical Engineering Students
- Two semester project (continuation of last year's project)
- Utilize group cooperation, time management, & classroom teachings

Fund for the Improvement of Postsecondary Education (FIPSE)

- Two members of Team 8 were studying in Itajuba, Brazil during the 2014 Fall Semester
- International experience
- Communication and Teamwork skills

Tavarius Slaughter

Final Presentation

Team: 8

Slide 3 of 36

Background

Unmanned Aerial Vehicle (UAV): An aerial vehicle without a human pilot aboard

Military Uses:

- Reconnaissance
- Combat
- Logistics

- **Civilian Uses:**
 - Land Surveying
 - Film Making
 - Supply Delivery

Benefits:

- Rescue missions
- High precision of navigation
- Low cost

Strong desire to improve UAV technology for commercial and military applications

Team: 8

Slide 4 of 36

Tavarius Slaughter

AUVSI Design Competition

Competition Overview:

- Association for Unmanned Vehicle Systems International (AUVSI)
- Student Unmanned Aerial System (SUAS) Competition
- Promotes innovation in UAV technology
- 2015 AUVSI rules used as reference for design

Primary objectives:

- Autonomous Takeoff and Landing
- Autonomous waypoint navigation
- Image recognition capabilities

Secondary objectives:

- Off-axis imaging
- Object detection/avoidance
- IR imaging
- And more...

Team: 8

Tavarius Slaughter

Final Presentation

Slide 5 of 36

Goals & Objectives

"The goal of this project is work effectively as an international team to create a Vertical Takeoff and Landing (VTOL) aircraft for future success at the 2016 AUVSI SUAS Competition."

Objectives:

- Design a hybrid VTOL aircraft using existing Senior Telemaster plane
- Build to meet all AUVSI design specifications
- Achieve autonomous vertical takeoff and landing
- Show transitional flight possiblity

Tavarius Slaughter

Team: 8

Slide 6 of 36

Design Requirements

AUVSI Specifications:

- Aircraft shall comply with Official Academy of Model Aeronautics (AMA) National Model Aircraft Safety Codes
- Capable of autonomous flight
- Transmit on Wifi (2.4/5.8GHz) and on multiple Radio Frequencies (RF)
- Flight Time = 40 minutes maximum
- Stay in controlled flight within the no fly zone
- Display their aircraft location and altitude in real time
- Sustain flight between 100 and 750 feet MSL entire flight
- Maximum airspeed of 100 KIAS (Knots Indicated Airspeed)
- The aircraft shall be capable of manual override
- Aircraft shall be less than 55 lbs

Team: 8

Slide 7 of 36

Tavarius Slaughter

2013-2014 Aircraft

• The 2013-2014 Team provided:

- Senior Telemaster Plane
- Proved Autonomous Flight Capabilities
- Proved Video Capture Capabilities

• <u>Did not</u> provide or broken:

- GoPro video camera
- Adrupilot APM 2.5 flight controller
- 3DR Telemetry Kit

Image: Construction of the second second

Team: 8

Tavarius Slaughter

Final Presentation

Slide 8 of 36

Design Options

• Key Components:

- Technical Development for Team 8
- Cost and Build Time
- Automation
- Performance Characteristics

	Importance	Plane	Multirotor	Hybrid
Cost	10	9	5	5
Build Time	10	9	3	4
Weight	4	6	5	4
Durability	4	4	7	6
Troubleshooting	7	3	6	4
Tech. Development	10	4	8	10
Future	5	3	7	10
Stability	3	5	8	8
Payload	5	8	5	8
Flight Time	8	7	5	8
Horz. Velocity	6	7	5	7
Automation	8	8	7	5
Airdrop	4	5	8	7
Agility	4	5	8	6
	Total	553	524	570

John Murnane

Slide 9 of 36

Design Concepts

- Key Components:
 - Cost
 - Build Time
 - Weight
 - Strength

Design 2- Diamond Frame

Design 1- Offset Arms

Design 3- "H" Frame

	Importance	Design 1	Design 2	Design 3
Cost	10	4	4	7
Build Time	8	4	4	6
Weight	8	7	6	5
Difficulty	5	4	4	6
Strength	5	4	7	7
Aerodynamics	5	6	4	4
Vibration	5	4	4	6
Variability	3	4	4	8
	Total	230	227	297

John Murnane

Final Presentation

Slide 10 of 36

Team: 8

Material Selection

• Material Weight and Cost Estimate:

Frame Design: Weight and Cost Analysis											
Component	Description	Weight/Part (lb)	Price	Qty.	Weight (Ib)	Subtotal	Extras				
Plywood	Base	1.171	\$0.00	1	1.171	\$0.00					
G10	Motor Mount Adapter Excellent Tensile and Impact Strength	0.055	\$0.00	8	0.443	\$0.00					
Carbon Fiber Tubes	Parallel Arms for holding the motors Excellent Tensile Strength	0.716	\$35.87	2	1.432	\$71.74	\$35.87				
6061 AI	Square Tubes Cross Bar Good/good : Tensile/Impact	1.015	\$23.38	2	2.030	\$46.76	\$23.38				
Foam Spacer	Padding to Protect Plane and Decrease Vibration	0.406	\$34.03	1	0.406	\$34.03					
D.B. Orange	Double/Bubbe Orange Epoxy, 10 Pack High Peel Stgth.	0.000	\$16.00	1	0.000	\$16.00					
Velcro	Industrial Strength Double Sided Velcro to Attach the Frame to the Plane	0.250	\$20.00	1	0.250	\$20.00					
Zip Ties	Zip ties to Secure the Carbon Fiber Tubes to the Cross Bars	0.000	\$10.00	1	0.000	\$10.00					
Hardware	Screws, Bolts, Etc.	0.000	\$70.00	1	0.000	\$70.00					
		1		Subtotal	5.733	\$268.53	\$58.87				
				Total	2.600	kg	\$327.40				

Team: 8

John Murnane

Slide 11 of 36

Material Selection

• Aluminum 6061 Tube Displacement:

- Maximum thrust of each motor during flight ≈ 5kg = 49N
- Thrust forces applied 100 cm apart
- Fixed about 15 cm width of plane

Slide 12 of 36

Component Selection

Mass Plane	Mass Quad	Mass Total	Desired Thrust
5488.6 g	2750 g	8238.6 g	4119.3 g

- Using Desired Thrust Calculation:
 - (4) Cobra 4510 DC Multirotor Motors
 - (4) 18" long x 5.5" pitch APC Propellers

- Manufacturer's Specifications of 4468g
- Verified using eCalc and Static Thrust Calculators

$$M_{total} = M_{plane} + M_{quadrotor}$$
$$T_{desired} = \frac{M_{total}}{4} \times 2 (FoS)$$

Thrust Calculators	Thrust
Manufacturer's Specs.	4468 g
eCalc Calculator	4144 g
Static Thrust Calculator	5560 g

Note: All calcs. done using 22.2V 6 cell battery

John Murnane

Slide 13 of 36

Team: 8

Quadrotor Design

• Design Components:

- 1. Plywood Base
- 2. Quick-Recovery Foam Pad
- 3. (2) Aluminum Cross Bars
- 4. (2) Carbon Fiber Arms

- 5. (4) ABS Arm Clamps
- 6. (4) G-10 Motor Mounts
- 7. (4) Cobra 4510 DC Motors
- 8. (4) APC 18x5.5" Props

Team: 8

John Murnane

Slide 14 of 36

Electrical Design

Component Selection:

- Futaba 2006GS receiver 0
- Futaba 6J transmitter Ο
- (2) 5000mAh Venom Flight Packs Ο
- (4) Cobra 60A ESC Ο
- Ardupilot APM 2.6 Ο
- NiMH 6V battery Ο
- **3DR Telemetry Kit** Ο
- **3DR Ublox GPS** 0
- 3DR PPM sum 0

Cobra Cobra Motor Adrupilot GPS Motor Cobra ESC Cobra ESC Battery 6۷ Venom Flight Venom Flight Pack Pack Cobra Cobra Motor Motor Cobra ESC Cobra ESC

RC

Receiver

3DR

Telemetry

Team: 8

Slide 15 of 36

5000 25C

Final Presentation

John Murnane

Flight Time Calculation

Flight Time for Quadrotor

- (2) 5000 mAh batteries for a total of **10 Ah**
- Ideal takeoff speed = 0.5 m/s at 75 % throttle
- Each motor draws an average of 30 amps for a total of 120 amps
- Maximum Depth of Discharge (DoD) of batteries = 80%

Flight time =
$$\frac{(.8*battery\ capacity\)}{(total\ current\ drawn)} \frac{(60\ min)}{(hours)} = \frac{(.8*10Ah\)}{(120A)} \frac{(60\ min)}{(h)} = 4\ min$$

• Operation Time for APM 2.6

- Maximum current = 2.25 A and Operating voltage = 5.37V
- Power output = **12.08 Wh**
- NIMH battery output power = **12 Wh**
- The maximum depth of discharge (DoD) for the batteries is 80%

$$Operation time = \frac{(.8 * battery output power)}{(APM power output)} \frac{(60 \text{ min})}{(h)} = \frac{(.8 * 12 Wh)}{(12Wh)} \frac{(60 \text{ min})}{(h)} = 47.67 \text{ min}$$

John Murnane

Slide 16 of 36

Team: 8

Final Design

Results:								
Vertical Thrust	17.87 kg							
Total Weight	8.23 kg							
Quadrotor Flight Time	4.00 mins							

John Murnane

Slide 17 of 36

Team: 8

Environment, Safety, & Health

• Environment

- Portable workspace cleared of excess material to ease maneuverability in emergency
- Batteries should not leak, be brightly colored so they can be found if crash occurs
- Verify all components adequately secured to vehicle

• Safety

- Safety inspections shall include a physical inspection, fail safe check, flight termination check, and a maximum weight check.
- All testing was done a safe distance away from buildings and people
- Aircraft tied down with a tether during test flights
- Aircraft is always flown within the operator line of sight
- Batteries are unplugged before handling craft
- Obey all FAA laws: <u>https://www.faa.gov/uas/regulations_policies/</u>

• Health

- Chemicals arranged to be stored in designated sections
- Gloves are used when handling Epoxy
- Other Personal Protective Equipment (PPE) used when machining or handling chemicals

John Murnane

Final Presentation

Team: 8

Slide 18 of 36

Flight Testing

• Importance:

 Is prototype fully functional as it was designed?

• Goal:

- Achieve stable autonomous Takeoff and Landing
- Safety:
 - Hazards to people and the model
 - Obey all local and federal Laws

• Assumptions:

- APM will compensate for minor changes
- Minor adjustments to PID would fix any problem
- Uncertainty:
 - What needs to be changed to fix any remaining issues?
- Validation:
 - Results of 3 phase testing

Christopher Bergljung

Team: 8

Slide 19 of 36

Phase 1: Quadrotor

• Manual test:

- Test roll, pitch, and yaw movements
- Record data

• Autonomous test:

- Setup mission planner
- Record data

Christopher Bergljung

Team: 8

Slide 20 of 36

Quadrotor Video

Team: 8

Slide 21 of 36

Christopher Bergljung

Quadrotor Results

• Video Results

- Stable flight obtained both manually and autonomously
- Flew to 16m height
- Mission Planner Results
 - Pitch, Roll, Yaw, Altitude

Christopher Bergljung

Team: 8

Slide 22 of 36

Phase 2: Quad + Plane Body

• Manual test:

- Test Roll, Pitch, and Yaw movements
- Record data
- Autonomous test:
 - Setup Mission Planner
 - Record Data

Christopher Bergljung

Final Presentation

Team: 8

Slide 23 of 36

Quad + Plane Body Video

Team: 8

Christopher Bergljung

Slide 24 of 36

Quad + Plane Body Results

• Video Results:

- Pilot noticed yaw movement during manual flight
- Autonomous flight also showed yaw sway

• Mission Planner Results:

• Pitch, Roll, Yaw

Christopher Bergljung

Team: 8

Slide 25 of 36

Phase 3: Hybrid

- Manual test:
 - Test roll, pitch, and yaw movements
 - Record data
- Autonomous test:
 - Setup mission planner
 - Record data

Christopher Bergljung

Final Presentation

Team: 8

Slide 26 of 36

Hybrid Video

Team: 8

Slide 27 of 36

Christopher Bergljung

Hybrid Results

- Video Results
 - Stable flight obtained
 - Adjustments needed in Yaw
- Mission Planner Results
 - Stable flight

Christopher Bergljung

Slide 28 of 36

Transition Flight

To achieve transition flight a custom firmware needs to be developed Firmware needs to be coded for hover to horizontal flight:

- 1. Begin slow forward flight with quadrotor
- 2. Gradually increase front propeller RPM's, until desired thrust is achieved
- 3. Once desired forward velocity is achieved, quadrotor motors can be cut off

Firmware also needs to be coded for horizontal flight to hover:

- 1. Plane will maintain current altitude at slowest flight speed at which it can still maintain lift
- 2. Quadrotor frame will turn on to generate lift while also slowing the vehicles motion
- 3. Aircraft will fly under the control of the quadrotor

Final Presentation

Team: 8

Slide 29 of 36

Bill of Materials

Mechanical BOM											
Part	Quantity	Cost									
Carbon Fiber 0.5" Tubes	3	\$41.05									
Industrial Strength Velcro	6	\$30.39									
Double Bubble Orange Epoxy	6	\$11.99									
APC 18"x5.5" Props	6	\$76.98									
Resilient Foam Base	1	\$40.44									
Aluminum 1"x1" Tubes	3	\$85.71									
Fasteners	1	\$70.36									
Total	Total										

Electrical BOM											
Part	Quantity	Cost									
Adrupilot APM 2.6	1	\$239.98									
12 AWG Wire and Connectors	16	\$64.40									
Cobra 4510 DC motors	4	\$299.96									
Cobra 60A ESC	4	\$195.44									
Venom LiPo Battery	1	\$119.99									
3DR Telemetry Kit	1	\$110.36									
Shipping	1	\$101.04									
Total	\$1,131.17										

Team: 8

David Hegg

Slide 30 of 36

Budget

• Accomplishment:

Team 8 was able to stay within \$1500 project budget over the course of the project

• Breakdown:

- 1. Utilized \$1488.09 (99.2%) of the budget
- 2. Replacing Broken Parts- \$350.34 (23%)
- 3. Purchased Surplus Parts

Team: 8

David Hegg

Slide 31 of 36

Schedule

		A	Aug 16	, '15		Aug 3	0, '15	S	iep 13,	'15	Se	p 27, '1	5	Oct	11, '15		Oct	25, '15		Nov 8	, '15		Nov 2	22, '15	5	Dec	6, '15		Dec 20
Task Name 👻	Duration 👻	14	18	22	26	30	3 7	11	15	19 2	23 27	1	5	9 1	3 17	21	25	29	2	6 10	14	18	22	26	30	4	3 12	16	20 2
Fall Semester 2014	16 wks																												
Spring Semester 2015	16 wks																												
Fall Semester 2015	17 wks																												
Transitional Flight	14 wks																												
Research Transitional Flight Options	3 wks							٦																					
Implement the best option for transitional flight	6 wks							ľ																					
Test Transitional Flight	3 wks																•				Ь								
Troubleshoot and supplemental test	2 wks																				1								
Competition Secondary Task	3 wks																							Ť					
Research and select secondary task	1 wk																												
Designs for secondary Task	2 wks	1																											
- VTOL/Stability																													
Assessment and Future Plans	1 wk																												

Team: 8

David Hegg

Slide 32 of 36

Lessons Learned

What was learned:

- International communications skills
- Working with multidisciplinary teams •
- Time management and planning
- Work experience in an innovative field
- Control systems
- Autonomous flight

Team: 8

Slide 33 of 36

What could have been done differently:

- Ensure passed down parts function properly
- Use resources better (professors and facilities)
- Better communication with sponsor and advisors

Conclusion

Conclusion:

It was possible to achieve autonomous VTOL with a Senior Telemaster plane by adding a quadrotor attachment

How it was achieved:

- Designed an operating quadrotor attachment which included:
 - Motor Selection
 - Power design
 - Center of Gravity
 - Aerodynamics
- Selecting and configuring APM 2.6
- Extensive testing of autonomous and manual flight

Impact for 2015-2016 Team:

- Ability to focus on transitional flight and secondary objectives
- Critical parts are in working condition
- AUVSI competition is within reach

David Hegg

Team: 8

References

- 1. <u>http://www.marksanborn.com/blog/5-questions-agenda-today/</u>
- 2. http://usatoday30.usatoday.com/tech/news/surveillance/2006-08-06-drones_x.htm
- 3. https://www.uavs.org/commercia
- 4. https://www.uavs.org/advantages
- 5. <u>https://higherlogicdownload.s3.amazonaws.com/AUVSI/fb9a8da0-2ac8-42d1-a11e-d58c1e158347/UploadedFiles/2015%20SUAS%20Rules.pdf</u>
- 6. http://www.modelaircraft.org/files/105.pdf
- 7. http://jer10d.wix.com/auav
- 8. http://www.hobbyexpress.com/senior_telemaster_plus_oversize_1034837_prd1.htm
- 9. http://store.3drobotics.com/products/iris
- 10. <u>http://www.arcturus-uav.com/aircraft_jump.html</u>
- 11. http://www.cobramotorsusa.com/
- 12. https://www.apcprop.com/
- 13. http://www.ecalc.ch/
- 14. <u>http://personal.osi.hu/fuzesisz/strc_eng/</u>
- 15. http://www.zazzle.com.au/drone+stickers
- 16. <u>http://pixgood.com/brazilian-american-flag.html</u>

Team: 8

David Hegg

Slide 35 of 36

Questions?

Slide 36 of 36

Appendix: Plywood Base

Appendix: Aluminum Tubes

Appendix: Carbon Fiber Tubes

Appendix: Clamp Bottom

Appendix: Clamp Top

Appendix: Motor Mount Bottom

Appendix: Motor Mount Top

